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We present rules for the unsupervised learning of coincidence between 
excitatory postsynaptic potentials (EPSPs) by the adjustment of post-
synaptic delays between the transmitter binding and the opening of 
ion channels. Starting from a gradient descent scheme, we develop a ro-
bust and more biological threshold rule by which EPSPs from different 
synapses can be gradually pulled into coincidence. The synaptic delay 
changes are determined from the summed potential—at the site where the 
coincidence is to be established—and from postulated synaptic learning 
functions that accompany the individual EPSPs. According to our scheme, 
templates for the detection of spatiotemporal patterns of synaptic acti-
vation can be learned, which is demonstrated by computer simulation. 
Finally, we discuss possible relations to biological mechanisms.

1 Introduction and New Learning Scheme

The timing or coherence of a neuron’s input signals determines whether 
the neuron behaves as an integrator or coincidence detector (Abeles, 1982). 
Regarding the number of impulses that are required to exceed a voltage 
threshold—for example, at the axon hillock or a dendritic site with voltage-
dependent mechanisms—temporally incoherent signals are less effective 
than synchronized ones. However, if we take into account axonal and den-
dritic propagation times, significant coincidence cannot be expected for 
synchronous impulse emission (Glünder & Nischwitz, 1993). Consequently, 
and in contrast to the prevailing paradigm that learning manifests itself in 
the change of synaptic strengths, we took first steps toward a formalism for 
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unsupervised learning of individual synaptic delays that aims to produce 
coincident excitatory postsynaptic potentials (EPSPs) at a defined site. If 
this site differs significantly from that of the synapses (of course, within the 
same postsynaptic neuron), we confront the well-known communication 
problem associated with any form of nonlocal synaptic coincidence learn-
ing, Hebbian learning included (see, e.g., Palm, 1982, and section 5 of this 
article). While other authors account for delay changes by synaptic selection 
from a multiplicity of axonal or dendritic pathways with different propaga-
tion times (e.g., Gerstner, Ritz, & van Hemmen, 1993; Hopfield, 1995; Miller, 
1989; Tank & Hopfield, 1987), we propose postsynaptic processes. Promis-
ing candidates for adjustable delays between synaptic activation (transmit-
ter binding) and the generation of a postsynaptic potential (opening of ion 
channels) are experimentally demonstrated molecular messenger cascades 
(Hille, 1994; Wickman and Clapham, 1995) that we consider as structurally 
less costly than the approach noted in the previous sentence (cf. section 5).

Aside from solving timing problems in neural circuits, delay learning 
can serve the evaluation of spatiotemporal patterns of synaptic activation 
(Carr, 1993; Eggermont, 1990; Wang, 1995). For such computational pur-
poses, the idea of adjustable delays has been considered by several authors 
(Baldi & Atiya, 1994; Eckmiller & Napp-Zinn, 1993; Glünder & Nischwitz, 
1993; Jansen, Bluhm, Napp-Zinn, & Eckmiller, 1991; Napp-Zinn, Jansen, & 
Eckmiller, 1996), and recently Hopfield (1995) has suggested a neural pulse 
position modulation with intensity-invariant demodulation by “coordinat-
ed time delays.” For nonspiking networks, learning schemes have been for-
mulated by Baldi and Atiya (1994), Bell and Sejnowski (1995), Bodenhausen 
and Waibel (1991), and Tank and Hopfield (1987), but to our knowledge, no 
mathematical framework for unsupervised delay learning in pulse-coupled 
neurons has yet been published.

This article relates our threshold rule (Glünder & Hüning, 1996) for unsu-
pervised learning of synaptic delays to the gradient descent scheme. Figure 1 
shows three synapses of a neuron that are activated at times t iact�  and their 
EPSPs delayed by � i. The idea is to determine the delay changes �� i  during 
every time interval T where the somatic or a local dendritic depolarization 
u t( ), that is, summed EPSPs, is above a learning threshold � (see Figure 2). 
For their computation we must assume a secondary process that accompa-
nies each EPSP and determines the amount and direction of the changes. 
With this postulated learning function �( )t , the delay change is

� � �� � ��i i i
T

u t t t t� ( ) ( )	 
 	 	� act d� . (1.1)

Thus we propose delay changes proportional to the temporal integral of the 
weighted learning function, where the weighting term is the suprathreshold 
depolarization u t( ) 	 �� 0. A good choice for the learning function �( )t  is 
the EPSP function’s negative derivative (see section 3).



Synaptic Delay Learning 557

In the next section we present a gradient descent approach to synaptic 
delay learning, from which a first learning function is derived, and we in-
troduce the computation of the delay changes at the time of maximum de-
polarization. In section 3, we further develop this scheme to our threshold 
rule and generalize the concept of the learning function. We proceed with 
the simulated formation of a detector that becomes tuned to a spatiotempo-
ral pattern of synaptic activation, and we consider the issue of stability. In 
the conclusion, we briefly relate our theoretical investigations to known and 
expected biophysical and neurobiological mechanisms.

2 Relation to Unsupervised Gradient Descent Learning

We relate the unsupervised learning of synaptic delays to schemes of error 
minimization by using the mathematically convenient parabolic EPSP func-
tion (see Figure 2A),

h t t t
p( )  	 	 � ��

�
�

1 1 1
0

2 for
else

 .

For reasons that will soon become evident, we define the activation onset 
(beginning of the transmitter binding) of synapse i as t t ti iact ref�  	 . With 
a relative activation time ti � 0, it then precedes the reference time tref  at 
which the delay changes are computed. We assume that N excitatory and 

Figure 1: Differently timed (t iact� ) activation of three synapses at a cell or cell 
patch evokes delayed (� i) EPSPs that result in the net depolarization u t( ). The 
continuously adjustable delays are to be learned for coincident EPSPs.
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linearly transmitting synapses contribute—each with a single EPSP—to a 
neuron’s depolarization u t t( ) ref . For this to happen, the synaptic delays � i 
must obey the relation ti i	 �� 1. Then the summed potential is

u t t N ti i
i

( ) ( )  	 	�ref � 2 .

Clearly, u t t( ) ref  becomes maximum for N coincident EPSPs, which can be 
achieved by minimizing—through gradient descent—the squared Euclid-
ean distance between the relative activation times ti and the associated de-
lays � i. This leads to the well-known learning rule, here for synaptic delays 
�� �i i it� 	 . Unfortunately, the relative activation times ti are unknown to 
the neuron. However, formally ti i	 �  can be expressed by the derivative of 
the EPSP function as 	 � 	 

1
2

d
dt p i i th t t( )� 0, using tref  0 for simplicity. An 

essential point of this article is that such a secondary and clearly hypothet-
ical signal is indispensable. It accompanies each EPSP (see similar ideas in 
Gerstner et al., 1993), and we refer to it as a synaptic learning function �( )t . 
For the parabolic EPSP h tp( ), the learning function resulting from gradient 
descent is �p t pt h t t( ) ( )� 	 d

d 2  for 	 � �1 1t  and zero where the EPSP is 
zero as well. At the reference time, all EPSPs’ learning functions are sam-
pled to give the delay changes (learning increments) of the corresponding 
synapses.

Although specific signals may exist that define a reference time, we now 
propose to consider the time at which the depolarization u t( ) is maximum. 
If the sum of N parabolic EPSPs exhibits a single maximum, then the here-
by defined reference time becomes t tN i iimax ( ) 	�1 �  and the maximum 
potential is u t N e( )max  	 � 2, with the components of the error vector

e t ti i i N j j
j

 	 	 	�( ) ( )� �1 .

Hence, if we keep to the learning function �p t( ), we arrive at the learning rule 
�� i ie�  (Hüning, 1995). Here, the sampling of the learning function takes 
place at the maximum of the depolarization. Although this signal-defined 
reference time is less ad hoc, maximum detection is difficult to implement, 
highly sensitive to noise, and thus biologically quite implausible.

3 Temporally Distributed Delay Learning (Threshold Rule)

As a scheme for the unsupervised learning of synaptic delays that is more 
robust with respect to noisy potentials we finally propose the depolariza-
tion-dependent threshold rule (see equation 1.1). With this scheme, delay 
changes are executed either continuously during or at the end of learn-
ing intervals T�  for which the net depolarization remains above a learning 
threshold � (see Figures 2A and 2B, bottom). Although learning defined by 
equation 1.1 appears functional also without the suprathreshold function 
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v t u t( ) ( ) 	 �� 0, we include this weighting to avoid conflicting and some-
times stable oscillatory delay changes that otherwise can result from con-
curring activation patterns at successive learning intervals (see section 4).

Figure 2: Evaluation of individual synaptic delay changes �� i from the net de-
polarization u t( ) (bottom) of a cell patch with four active synapses. For every 
synapse, we show an EPSP, its learning function � (dashed line, except bottom), 
the weighted learning function v 
 �  (with v t u t( ) ( ) 	 �� 0), and its integral 
(dotted line) that is proportional to the delay change. EPSP shape h t( ): (A) para-
bolic, h t tp( )  	1 2  for 	 � �1 1t ; (B) �-function, h t t e t

�
��( )  
 	2  for t � 0.
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If every parabolic EPSP and therefore the associated synaptic learning 
function �p t pt h t( ) ( )� 	 d

d  entirely cover the learning interval, we obtain from 
equation 1.1 the learning rule �� �i iV e� 
  with the suprathreshold area 
V u t tT� �

�
 	� � �( ) d . Figure 2A depicts a situation where three parabolic 

EPSPs cover the learning interval, while a fourth EPSP comes later and is 
not captured. In contrast to schemes relying on reference times, where EPSPs 
are not captured if they do not contribute to the sampled depolarization, 
our threshold rule shows a gradual coupling of EPSPs that only partly reach 
into the learning interval. In the latter case, the delay changes increase with 
every presentation of a spatiotemporal activation pattern until an EPSP’s 
maximum enters the learning interval. This behavior becomes pronounced 
with more realistic EPSPs—that is, with unimodal functions that steeply 
rise and slowly decay. (For asymptotically decaying EPSPs, we reasonably 
assume learning functions of finite duration � �( )t t�  0, with h t t( )� �� �, 
where � may depend on the noise level.) With this kind of asymmetric EPSP 
function and �( ) ( )t h tt� 	 d

d , early EPSPs will be captured long before their 
maxima enter the learning interval, whereas late EPSPs, which rise after the 
interval, either fail to be captured (the fourth synapse in Figure 2B) or create 
a separate learning interval (for a lower threshold than in Figure 2B).

Because various synaptic learning functions are feasible for a given uni-
modal EPSP function h t( ), we have investigated general requirements. Evi-
dently learning functions must change sign from minus to plus in order to 
give the direction of the delay changes. Formally, we have found that all 
learning functions �( ) ( ){ }t f h tt� 	 d

d  with any monotone increasing func-
tion f comply with the demand that learning must stop, that is, the inte-
gral (see equation 1.1) must vanish, if coincidence of the EPSPs is reached 
(Hüning, 1995). This holds for all threshold settings. Function f permits one 
to tailor the properties of the learning process. For instance, it may serve the 
smoothing of a learning function’s otherwise discontinuous onset and the 
restriction of its duration. Furthermore, we can conclude that coincidence 
learning still works with EPSPs of various amplitudes.

4 Simulation of Spatiotemporal Template Learning

We demonstrate unsupervised synaptic delay learning by the simulated for-
mation of detectors for spatiotemporal patterns of synaptic activation. As 
an example, we consider the time courses of activation at 10 synapses of a 
formal neuron (see Figure 3A). Each of the two distinct patterns lasts longer 
than a single EPSP. Before the repeated presentations of the pattern pair, the 
10 synaptic delays are randomly distributed in the interval 0.5 3� �� �� i , 
where � is the duration of the parabolic EPSP. Therefore, and because both 
patterns are well separated in time, the neuron, at best, will be tuned to one 
of them. A steady time course of the neuron’s depolarization (see Figure 3B) 
is reached after 21 presentations of the pattern pair. Owing to the greater 
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similarity of the first pattern to the specific random initialization, the thresh-
old rule has produced a detector for this pattern which is obvious from the 
final synaptic delay configuration (slightly imperfect template) depicted in 
Figure 3C.

Apart from the functionality of delay learning with the threshold rule, 
our simulation illustrates the effect of temporally limited EPSPs and learn-
ing functions, as well as the competition of different patterns. As long as an 
EPSP contributes to the suprathreshold depolarization, the corresponding 
synaptic delay becomes adjusted, which in our example is not fulfilled for the 
second synapse. Furthermore, if both patterns produce suprathreshold de-
polarizations, we then obtain opposing delay changes. However, oscillations 
are avoided by the weighting term of equation 1.1, which drives the learn-
ing process toward the pattern that evoked the largest initial suprathresh old 
voltage.

Because a neuron’s delay tuning is not changed by patterns that remain 
subthreshold, a sufficiently high learning threshold retains a tuning even 
without any further occurrences of the pattern that gave rise to it. Therefore, 
a threshold that adapts toward the peaks of the depolarization provides a 
stable delay tuning. Intermediate thresholds cause an adaptive averaging 
behavior. Accordingly, the delay tuning can follow a slowly changing and 
repeatedly presented pattern of synaptic activation (Napp-Zinn et al., 1996), 

Figure 3: Formation of templates for spatiotemporal patterns. (A) Sample of the 
stimulation patterns at 10 synapses of a neuron. (B) Steady time course of the 
net depolarization after delay learning. (C) Final delay configuration �( )i .
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provided the threshold is crossed at every occurrence. For small, random 
fluctuations of a pattern, the delays are expected to be tuned to the temporal 
mean, because the integral (see equation 1.1) behaves approximately linear 
around the zero crossing for realistic EPSP functions.

5 Conclusion

In summarizing our results, in particular concerning their neurobiological 
implications, we have to speculate about possible biological mechanisms, 
not an easy task for theoreticians. However, our general impression of the 
recent progress in the investigation of synaptic mechanisms gives us a good 
confidence that suitable biological mechanisms for anything that is logically 
possible will be found eventually. So one should not worry too much about 
the concrete mechanisms proposed below.

We have presented a systems view of unsupervised and robust coin-
cidence learning in pulse-coupled neurons that essentially relies on three 
assumptions.

1. Only a sum of EPSPs is accessible at a defined measuring site at 
which the EPSP coincidence is to be established. Similar to long-term 
changes of synaptic strengths (Brown, Kairiss, & Keenan, 1990), synaptic 
delay changes also are assumed to depend on pre- and postsynaptic po-
tentials. With respect to postsynaptic potentials, local dendritic learning is 
based on dendritic depolarization, whereas more global neural learning re-
lies on the potential at a neuron’s axon hillock. The process of delay learning 
will lead to coinciding EPSPs at these sites.

2. The time course of the voltage above a learning threshold at the 
measuring site is available to the individual synapses. Voltage thresholds 
are biologically plausible (Artola & Singer, 1993), and their adaptation ac-
cording to the long-term mean of the depolarization was proposed earlier 
(Bienenstock, Cooper, & Munro, 1982). In the case of local dendritic learn-
ing schemes, the suprathreshold depolarization can easily be sensed by 
synapse-related molecular mechanisms. Rules that are nonlocal within the 
postsynaptic cell require the suprathreshold depolarization to be instanta-
neously signaled, for example, from a neuron’s axon hillock, back to all its 
synapses, which appears more involved. This well-known and indeed fun-
damental communication problem exists with any form of nonlocal synaptic 
coincidence learning, Hebbian learning of synaptic strengths included. Ex-
cept for the work reported by Stuart and Sakmann (1994), to date we have to 
rely more on speculations than on direct experimental evidence for possible 
communication mechanisms. Interestingly, Hebbian learning today gener-
ally is assumed local (Brown et al., 1990), although Hebb (1958) described a 
global scheme: “When an axon of a neuron x is near enough to fire a neuron 
y and does so, some change takes place such that x becomes more effective 
at exciting y. What is this change and how does it work? This is a question 
to which we have no final answer.” In case of passive or active dendritic 
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propagation of action potentials (e.g., back from the soma to the synapses), 
these potentials will act in the same way as the dendritic depolarizations do 
in our scheme; they will define the learning intervals and the weighting of 
the learning function.

3. A uniform learning function is attributed to every synapse and is 
triggered at the opening of its ion channels (EPSP onset). Delay learning, 
as proposed in this article, requires that the synapse contributes to the post-
synaptic depolarization and that a postulated differentiating (biochemical) 
process parallels its individual contribution. This kind of process could be 
realized by the interaction of an intracellular messenger, such as an activated 
G protein, and channel proteins (Destexhe, Mainen, & Sejnowski, 1995).

Under these circumstances, we have shown how to compute the de lay 
change of an active synapse from the values of its learning function in con-
junction with its suprathreshold depolarization. Biologically speaking, we 
assume the suprathreshold depolarization to have a nonlinear influence on 
the differentiating (biochemical) process. During the periods of suprath-
reshold depolarization, this process could, for example, modify the tempo-
ral behavior of intracellular messengers that determine the delay between 
the transmitter binding to a transmembrane receptor and the intracellular 
opening of ion channels. This modification could be similar to changes of 
presynaptic messenger cascades, as initiated by retrograde diffusion of nitric 
oxide (Montague, 1993), that are hypothesized to cause long-term changes 
of synaptic strengths. In this respect, we do not rule out alternative mecha-
nisms for delay changes, such as modifications of the temporal behavior of 
presynaptic molecular processes. Currently there is increasing interest in 
membrane-delimited mechanisms of rather direct and thus comparative-
ly fast (within a second) interaction between activated G proteins and ion 
channels (Hille, 1994; Wickman & Clapham, 1995), but to our knowledge, 
on a millisecond time scale, the properties and their modifiability of these 
interactions have not been investigated yet.

Although the concrete biophysical or biochemical realization of delay 
learning is still unclear, we have demonstrated that this simple learning 
mechanism is well within the possibilities of our current neurobiological 
knowledge and would provide a useful addition to the commonly accepted 
plasticity of synaptic efficacy.
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