
Göttingen Neurobiology Report 1996

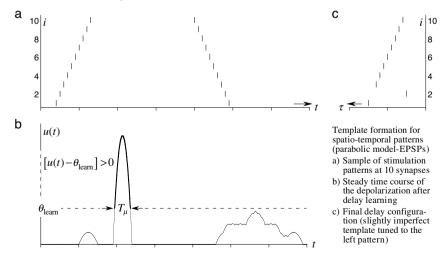
Proceedings of the 24th Göttingen Neurobiology Conference 1996, Volume II

Edited by Norbert Elsner and Hans-Ulrich Schnitzler

1996 Georg Thieme Verlag Stuttgart · New York

Detection of spatio-temporal spike patterns by unsupervised synaptic delay learning

Helmut Glünder^{1,2}, Harald Hüning²


¹ Inst. f. Medizinische Psychologie, LMU	² Abt. f. Neuroinformatik, Univ. Ulm
Goethestraße 31	Oberer Eselsberg
80336 München	89069 Ulm

If in certain brain regions the exact timing of axonal spikes is indeed the relevant parameter of neural signals, then the detection of spatio-temporal spike configurations appears fundamental for the processing of such signals. Therefore, we suggest the formation of spatio-temporal templates that is based on synapses with modifiable time delay. As a possible neural substrate, molecular messenger cascades are promising candidates for adjustable delays between *synaptic activation* (transmitter binding) and the onset of the postsynaptic potential (opening of the ion channels).

A template neuron carries synapses with delays τ_i that compensate the different arrival times of the EPSPs (evoked by the spike pattern) at a defined decision site. Our learning scheme requires a suprathreshold signal that is extracted from the depolarization u(t) at this site and that is available to the activated synapses whose delays change according to

$$\Delta \tau_i \sim \int_{T_{\mu}} \left[u(t) - \theta_{\text{learn}} \right] \cdot \lambda(t + t_i - \tau_i) \, \mathrm{d}t \, .$$

The learning function $\lambda(t) = -\frac{d}{dt} f\{EPSP(t)\}$, with an arbitrary but monotonously increasing function f, is derived from the EPSP and therefore, a synapse's learning function starts at the delayed onset of its EPSP. T_{μ} is an interval for which u(t) stays above a learning threshold θ_{learn} (see Figure), and t_i denotes the onset of the synaptic activation. If a spatio-temporal pattern of synaptic activation occurs sufficiently often, then a template is learned for synapses whose EPSPs initially have contributed to the suprathreshold signal. A neuron responds to its learned pattern with coincident EPSPs, i.e. with maximum depolarization, at the decision site.

