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Abstract

We start with historically founded reflections on the relevance of synchronized
activity for the neural processing of information and we propose to differentiate bet-
ween synchrony at the emitting and the receiving side. In the main part we introduce
model networks which consist of chains of locally coupled and noisy spiking neu-
rons. In the case of lateral excitation without delay as well as for delayed lateral in-
hibition these basic structures can turn homogeneous stimulations into synchronized
activity. The synchrony is maintained under temporally varying stimulations thus
evoking aperiodic spike fronts. Although we present some hypotheses, the question
of how the nervous system deals with this network property remains to be answered.

1. INTRODUCTION

Half a century ago McCulloch and Pitts [1] stated that neurons are principally
suited to perform Boolean operations. Undoubtedly, the authors were strongly influ-
enced by the developing theory of automata and especially by the incredible perspec-
tives of an effective mechanisation of the logical calculus. At that time, for instance,
electronic AND-gates consisted of a resistive network for the summation of electric
currents followed by an active thresholding device and therefore, they represented
an attractive structural and functional analogue to nerve cells. However, much more
importantly, this view marks the fundamental transition from regarding neurons as
integrators to realizing them as coincidence detectors (cf. [2; 3]). Although coinci-
dence detection is the principle of AND-gates, it did not become popular even in bio-
logical cybernetics and theoretical neuroscience. Instead, the generalized McCulloch/
Pitts-(model)neuron which computes with a mathematical construct, namely instanta-
neous impulse rates, and not with impulses (action potentials or spikes), became stan-
dard — not only for most simulations of neural networks but also for interpretations
of neurobiological experiments. Thus, until recently, only few scientists investigated
the temporal fine structure of neural signals, i.e. of spike trains and bursts as well as
the associated postsynaptic potentials, and hypothesized about its putative significance
for the processing of neural information.

1 The author is supported by the "Volkswagen-Stiftung" under the grant 1/65 914.
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2. THE RELEVANCE OF SPIKE SYNCHRONIZATION

In one of the early comments on this issue Wiener [4, chapter 10] points out that
coincident or synchronized spikes at a neuron's input terminals will be much more
efficient for the triggering of action potentials than asynchronous, for instance sto-
chastic impulses. Owing to this basic functional property of nerve cells, Wiener con-
cludes that synchronously oscillating nervous activity should be found in the brain —
a notion which appears rather modern, although he concentrated on the a-rhythm
while nowadays oscillations in the yband are favoured. Although Wiener's conclu-
sion and its presently discussed versions are appealing, they lack stringency:

(i) In the same way as the statement of McCulloch and Pitts does not imply that
neurons really act as AND-gates, the similarly reductionistic view of neurons as co-
incidence detectors does not imply the actual use of this faculty for neural processing
(cf. the analysis of basic misconceptions in cybernetics by Taube [5] chapter 6).

(ii) Obviously, the type of coincidence detection considered here takes place at a
neuron's axon hillock. Such somatic coincidences generally differ from synchronous
input to a neuron. Consequently, action potentials that appear at the same time at va-
rious presynapses of a target neuron — thus representing synchronous input activity —
need not cause coinciding excitatory postsynaptic potentials at its cell body (cf. [6]
section 5). This discrepancy can be due to differences in conduction times as well as
to delayed synaptic transmission which can be caused by molecular processes such as
second messenger cascades. One may even conjecture that, within limits, neurons are
able to produce somatic coincidences between non-coinciding action potentials by
(learning) appropriate synaptic delays.

(iii) At least phenomenologically, synchrony need not be bound to periodic proces-
ses because aperiodic events may be synchronized as well. It should be realized that
periodicity commonly refers to a single signal whereas synchronization exclusively
concerns the (temporal) relation between several signals. Hence, it is somewhat sur-
prising that the putative advantage of coincidence detection for the processing of
neural information is quite often associated with oscillatory activity in the brain.

Of course, there is a rarely explicated reason for the association mentioned in
comment (iii): The generation of synchronous spikes in neural populations by means
of local cooperative processes, i.e. without central control (triggering or gating), is
supported by short epochs of near to constant stimulation and consequently quasipe-
riodic firing. (This need not hold for already synchronized ensembles.) Whether this
kind of short-term binding is recognized as oscillatory is a matter of taste. We prefer
the aspect of fairly rapid variations in (synchronized) neural activity [7, section 4]
rather than that of more or less stationary oscillations — or oscillations in the sense of
slowly shifting and thus narrow spectral frequency bands. This emphasis appears jus-
tified by the notion that neurons are voltage controlled (stochastic) impulse genera-
tors (cf. [8]) which obviously serve the processing of time-varying signals.

According to remark (ii) there is generally little reason for the emission of syn-
chronous action potentials from a neural population in order to optimally stimulate
coincidence detectors (cell somata) if a transmission channel (axons, synapses and
dendrites) with space-variant temporal properties must be assumed. However, one
decade ago, a neural receiver mechanism was identified for which the emission of
synchronized impulses could make sense, namely coincidence-detecting NMDA-type
synapses [9; 10]. It can detect coincidences between action potentials that are trans-
mitted at essentially the same dendritic site [11] but, in contrast to the somatic coinci-



253

dence detection of tonic potentials, it is limited to small numbers of input signals. In
short, one must be aware of what is or should be synchronized at which location.

Other reasons for the generation of synchronous events are their direct behaviou-
ral use, such as the synchronous emission of light flashes by populations of certain
fireflies [4; 12], and the suspected relevance for general timing purposes [13; 14; 15].

We like to conclude this argumentation with yet another statement which antici-
pates the essence of our own investigations: We found that synchronization of neural
spiking activity generally must be expected in populations of homogeneously stimu-
lated neurons which are locally coupled — either in an excitatory space-invariant
feedforward fashion or by delayed (recurrent) lateral inhibition. Because both are
quite common interconnection schemes, especially in cortical structures, we conclude
that synchronized action potentials should not be regarded as particular network
states — at least unless these synchronizing mechanisms are commonly paired with
desynchronizing ones, such as inhibitory and space-invariant forward couplings — or
that our simulations turn out to be too simplistic.

3. NETWORKS OF LOCALLY COUPLED MODEL NEURONS

Our investigations started from the question regarding necessary conditions for
the generation of synchronous impulses in populations of locally interconnected mo-
del neurons. In order to tackle this problem, we needed an appropriate, i.e. in larger
populations still computationally manageable model neuron (unit) with spiking out-
put. A chain of such units that are laterally coupled with their neighbours by either
excitatory or inhibitory interconnections — with or without delay — was considered as
a promising and simple enough network structure.

3.1 The model neuron
We use a model neuron with the subthreshold behaviour of a leaky integrator
which can be characterized by its §-impulse response

hWty=e "/t for t20

with the time constant T =10ms. We distinguish three kinds of input signals that are

linearly summed by such units (all potentials are normalized to the threshold 6):

+ the feeding input e(t)
which represents stimulations from outside the network and changes the somatic
resting potential by u,(t)=e(t)* h(t) ("*" denotes convolution). For most of the
experiments reported here, we consider E:= e(t) = const. which simulates incohe-
rent input via many weakly transmitting, e.g. "apical-dendritic" synapses (Figure
3) and changes the somatic potential according to the step response (Figure 2)

uE(t)=E(1—e_’/T) for >0 .

« the lateral input a(t)=3Y ,w, p(t—1) (w,>O0: excitatory; w, <0: inhibitory)
is the weighted sum of impulse trains p,(t)=Y  s(t - t,() that are transmitted with
delay ¥ = const. from v neighbouring units via, e.g. "basal-dendritic or somatic"
synapses, i.e. from inside the network (Figure 3). (Times ¢, denote the spike po-
sitions in an impulse train.) This input alters the somatic potentlal accordmg to

u,(t)=a(t)* h(t). Figure 1 shows the assumed exponentially decaying action po-
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tential s(¢) (time constant 7,p = 0.144ms) together with its postsynaptic response
at the soma upgp(¢) which is normalized to its coupling strength w.
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« the noise input n(t) (individually computed for each unit)

is a random process with uniformly distributed values from the range + E/2
which mimicks stochastic fluctuations u,(¢) = n(t)* h(t) of the somatic potential.

In total, the change of the subthreshold somatic potential from the resting potential is
u(t)=u,(t)+uy(t)+u,(t)=[e()+a(t)+n(t)]=h(t) .

(We neither consider synaptic habituation nor nonlinear synaptic transmission or in-
teractions.) When the somatic potential exceeds the threshold 6, then an action poten-
tial s(¢) is triggered and 1ms later the somatic potential is set to the refractory poten-
tial for a period of 0.5ms before the integration can start again. The feeding input E
is specified by the period T of the impulse train it evokes in a noisefree unit.
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3.2 The network

Figure 3 depicts the neighbourhood of a model neuron in our one-dimensional,
single stage network. In order to avoid boundary problems in networks of manage-
able size the chain is cyclically closed and all its N units are coupled in the same way.
We consider either purely inhibitory or excitatory interconnections without direct
feedback from units onto themselves. Every unit receives input from its immediate
k << N neighbours on either side with a strength w,, that linearly decreases with the
distance, i.e. with |v|. Unlike the coupling strength, the transmission delay is assumed
constant which implies similar axonal conduction times as well as synaptic and post-
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synaptic processing (see point (ii) of section 2). In order to characterize the efficacy
of interaction in the whole network, we introduce the total coupling strength

+k
W= Zwv = const.
v=—k
v£0
of every model neuron. Of course, there is a reasonable desire for global stability
which in turn necessitates an upper limit of the excitatory coupling strength which
we choose to W,,;;, =+0.78. For this critical coupling strength an unstimulated and

. . C (1 . . .
noiseless unit begins to spike under synchronous unilateral input.

Figure 3. Local interconnection scheme of a unit in the one-dimensional network

Although we report on investigations of single stage or "single layer" networks,
locally divergent forward coupling between "layers” — similar to the one proposed
by Abeles [16, chapter 7] for the generation and transmission of synfire chains — ap-
pears more realistic for configurations without delay. Non-delayed lateral excitation
can be directly achieved by forward coupling whereas non-delayed lateral inhibition
requires the compensation of different delays between the central excitatory path and
the divergent inhibitory ones which are due to the inevitable inhibitory interneurons.

3.3 Network simulation and measures of synchrony

We studied the discrete nonlinear dynamics of the networks, i.e. we performed
simulations on a digital computer with the temporal resolution At¢. As a consequence,
the zero delay in the lateral links can only be approximated, i.e. one must accept the
mean intrinsic delay of ¥, = At/2. For the experiments reported here, all units of the
network received the same feeding input for times ¢ > 0. However, their initial so-
matic potentials (# <0) were individually set to uniformly distributed random poten-
tials from the "refractory potential to threshold"-range. Unless stated otherwise, the
parameter values of the networks were chogsen as follows:

At;=0.1ms; N;=64; k,=8; E; sothat T=10ms ;

This standard setting turned out to be useful for most of the investigations and does
not represent an extreme choice. The influence of deviations from these standard
values on the quality of synchronization is explicated elsewhere [17].
In order to quantify the degree of synchronization we define the instantaneous
spike density S(t) which is given by the binarized spike aktivity of the network in a
c
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spatio-temporal window which is N units long and one spike duration M - At =1ms
wide, devided by the maximum possible activity in this window (Figure 5).
1

1 ! . . 0 p(t)=0
__z 2 (¢ - (1) =
S(t) NM P.(t—jAt) with P(t)= 1 else
i=1 j=0

Consequently, S(¢)=1 denotes an instant of perfect synchrony, i.e. all N units must
have triggered action potentials at exactly the same time. Occasionally, we display
the envelope function S(t) of the spike density. Finally, the quality factor n is de-
fined as the mean over 50 runs of the maximum spike density that is determined du-
ing intervals of 50ms. We displ = =

ring intervals of 50ms. We display 75, M and 700

For an assessment of the quality factor we provide the reference quality 7,
which results from "synchrony by chance” in the uncoupled ensemble but, since the
reference quality depends on the impulse rate 7(W), which in turn can be converted
to an equivalent reference quality, 7, can also be specified for coupled networks.

4. SIMULATION RESULTS

After this detailed description which appears indispensible for judging the conse-
quences of our findings, we present a compilation of the main results in Figure 4.
Obviously, significant synchronization is feasible by either purely inhibitory or exci-
tatory lateral links. (Figure 5 shows examples of corresponding spike densities.) In
both cases, synchronization is based on the nonlinear characteristic of the somatic
integration: The efficacy of a postsynaptic potential in delaying/accelerating the trig-
gering of an action potential is higher for somatic potentials near the threshold than
for small depolarizations. Therefore and with respect to the spike emission, advan-
ced/retarded impulses are more strongly retained/impelled than late/early ones.

On the whole, a complementary behaviour is observable with respect to delays:
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Figure 5. Examples of instantaneous spike densities S(¢#) (note the different inputs)

Compared to the impulse rate r(W,,;,) =195s7! for the non-delayed transmission,
delays considerably increase the impulse rate to r,(W,,;) = 400s~! which means that
with delay additional impulses are generated while without it retarded action potent-
ials are accelerated up to synchrony. A similar effect holds for inhibitory links with
r(W=-1.87)=60s"! and n,(W=-1.87)=142s"1. (hef =r(W=0)= 180s71)

Actually, synchronization depends on the amount of the delay. For W =-1.0 and
E =2FE; we observed a continuous increase from desynchronization n_(d;) to the
maximum 7)_(?%,) which is sustained apart from 1ms dips at multiples of 6ms. How-
ever, for W =+.2 and E = E; we found a steep decrease from excellent synchroniza-
tion 1,(?¥) down to the reference level at ¥} =.5ms which is maintained except for
peaks around multiples of 6ms that are less pronounced for 15, and decrease with 9.

Responses to a linear downward sweep of the feeding input are plotted in Figure
6. The envelope of the spike density S(¢) indicates a consistently high degree of syn-
chrony over the whole range of stimulation. Furthermore, this experiment nicely re-
veals the nonlinear transfer characteristic r(e) of a coupled model neuron.
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5. DISCUSSION

According to our findings, synchronized spiking activity results almost inevitably
from homogeneously stimulated and especially excitatorily forward coupled or de-
layed (interneurons!) lateral inhibition networks. Contrary to the present euphoria
over this highly ordered spatio-temporal binding, we are not certain as to its rele-
vance for the processing of neural signals (see section 2): If a significant number of
neurons really act as somatic coincidence detectors for complex spatio-temporal ac-
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tivity patterns, why then are synchronizing circuits required? However, aside from
coincidence-detecting synapses, synchronous spike emission may turn out advanta-
geous for reasons of selforganization.

After this general consideration we return to the issue of synchronized aperiodic
spike fronts. In addition to the demonstration in Figure 6, we found that even abrupt
variations of the global stimulation do not significantly disturb an already existing
synchrony. — Moreover, spike synchronization happens stepwise and therefore, the
time needed to reach a desired degree of synchrony depends on the spike rate.

Compared with related work on excitatorily coupled networks we have shown
that neither nonlinear synapses [18] nor different time constants for feeding and syn-
chronizing inputs [19] are a requisite for good synchronization. Although fully inter-
connected networks [20; 21] cannot really be compared they show states similar to
those occuring in our experiments. In this context we would like to mention that our
preferred total coupling strength W =+.2 means a rather weak coupling.

Finally, we must indicate a limitation of temporally discrete simulations arising
from the fact that discrete nonlinear systems are not necessarily approximations of
their continuous originals. Hence, all such simulations must be taken with extreme
caution. Up to now we could only show a convergence for decreasing increments Af.
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