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A theorem is proven which serves as the mathematical basis for the propo-
sed global shift-vector extraction. This theorem states the identity of the 
difference vector between the centers of gravity (centroids) of two arbitrary 
nD density functions, with the centroid vector of their cross-correlation 
function. Consequently, the centroid of the cross-correlation function of 
consecutive manifestations of an arbitrarily transforming density function 
indicates its incremental shift vector. Advantages of this approach for im-
plementations in massively parallel computing structures as well as applica-
tions, such as visual velocity estimation of nonrigid objects, are discussed.

Introduction

The extraction of spatially global and temporally incremental changes from variations of a 
nonrigid density function or activity distribution is requisite for the visual analysis of ob-
ject motion in 3D space and, more generally, for the evaluation of distributed dynamic da ta 
representations that serve for fault-tolerant computing, etc. The sometimes rather difficult 
task of analysing well-defined geometric transformations of spatial density functions is 
essentially complicated by the demand for treating arbitrary changes. The here consid-
ered global analysis of the purely translatory portion of such general transformations of a 
density function must be based on characteristic points, most naturally the center of gravi-
ty (centroid). As it is known, the centroid location of a density function (non-negative!) is 
determined according to Eq. (2a) below. (The centroid of a real-valued function exists if 
its integral value is different from zero). Obviously, the desired global shift vector which 
relates the centroid positions 

�
Rt��0

 and 
�
Rt of successive (time interval �0) manifestations 

a r tt� �� �
0 0( , )
�

 and a r tt( , )
�

 of a changing density function is given by the difference vector

�
� � �
R R Rt t t� � ��0

 . (1)

In contrast to this straightforward solution, a method for the extraction of the global shift 
vector �

�
Rt is proposed for which the centroid locations of the two temporally separated 

functions a r tt� �� �
0 0( , )
�

 and a r tt( , )
�

 are not required. This approach is based on the cross-
correlation function of these two functions and the method is especially advantageous if 
massively parallel computing structures are considered and if the shift increments and the 
spatial extent of the density function are both small compared to the space to which the 
function’s position is confined.



203

The following section presents the mathematical core of the method. Next, an appropriate 
two-stage computing structure is introduced, and finally applications are discussed.

The Theorem

The ith component Xai of the centroid vector 
�

� �R X X Xa a ai an� ( )1
T of a real-valued 

nD function a r( )
�

 with 
� � �r x x xi n� ( )1

T is defined by the nD integral

X a r x rai A i� �	1 ( )
� �

d  with A a r r� 	 ( )
� �

d  (2a)

or, using the projection of a r( )
�

 along all (n �1) coordinates x xj i


a x a r ri i( ) ( )� 	 � �
d  with d d d d T�

� �r x x xi n� �( )1 0 , (3)

by the 1D integral

X a x x xai A i i i i� �	1 ( ) d  .   (2b)

By analogy, the ith component �ki  of the centroid vector of the cross-correlation function

k b r a r rba( ) ( ) ( )
� � � � �� �� � �	 d  with 

� � �� 
 
 
� ( )1 i n
T (4)

of the functions b r( )
�

 and a r( )
�

 is given by

�ki K bai i i ik� �	1 ( )
 
 
d  with K B A� �  (5a)

or, in a detailed and more convenient form:

�ki B i i A i i i i i ib x a x x� � ��� ��		1 1( ) ( )
 
 
d d  . (5b)

The inner integral of Eq. (5b) represents the ith component

�ai i A i i i i i i aix a x x X( ) ( )� � � � �	1 
 
 
d  (6)

of the centroid vector of function a xi i i( )� 
  or, in other words, of the centroid vector of 
function ai i( )�
  shifted according to xi . Inserting the rightmost expression of Eq. (6) into 
Eq. (5b) yields

�ki B i i i i
X
B i i i bi aib x x x b x x X Xai� � � � � �	 	1 ( ) ( )d d ��Xbai , (5c)

and reveals the claimed identity of the components �ki  of the centroid vector of the cross-
correlation function kba( )

��  computed from the two functions b r( )
�

 and a r( )
�

, with the 
differences �Xbai  of the corresponding components Xbi and Xai of the centroid vectors 
of these two functions (cf. Eq. (1)). Another proof can be based on the convolution-theo-
rem used in statistics which deals with means of probability densities (see [1], p. 266).



204

Network Structure

According to the initial problem, the first processing stage must compute the time-depen-
dent cross-correlation function

k t a r t a r t rt t t( , ) ( , ) ( , )
� � � � �� � ��� � � ��	 0 0 d  . (7)

It was shown in previous articles [2] and [3], how this can be achieved by a structured 
��-network [4] of polynomial order 2 with constant delays �0 applied to every second 
input. Such a network consists of many multiplying subunits of the basic Hassenstein/ 
Reichardt-type [5] sketched in Fig. 1, each receiving its input signals from one pair of 
points in the considered input space. The output signals of all possible subunits are sepa-
rately summed – according to the difference vectors 

��  of the points – by so-called ��- 
units. At every time t, the resulting ensemble of sums represents the desired correlation 
function of two successive manifestations of whatever dynamic event in the input space.

Figure 1. Subunit for the detection of spatio-temporal 
signal relations

For realistic problems, the number of ��-units will be prohibitively large, at least for 
technical implementations. However, if the individual shifts of all points of the density 
function are confined to a reasonably low value 

��max, e.g. by choosing a sufficiently 
short temporal interval �0, then, the number of ��-units is dramatically reduced. Under 
such realistic restrictions, the resulting correlation function will have an enormously 
lesser extent than the input space. Furthermore, a modular network design (local correla-
tions) is possible if the following minimum conditions are met. In order to permit the cal-
culation of correct global correlation coefficients by simple summation of the local re-
sults, the smallest spatial module must have an extent of 2

��  and neighbouring modules 
must overlap at least by 

��  (cf. [6]).

In a second stage the centroid location of the correlation function can be computed by 
feeding its values via appropriately weighted interconnections to summation nodes. The 
values at these nodes, divided by the spatial integral value of the correlation function, are 
the desired coordinates of the centroid (cf. Eq. (2a)).

The described two-stage network delivers the continuous time-course of the incremental 
(�0) global shift vector of an arbitrary dynamic density function in the input space. At the 
output of the first stage the shift vector is represented as an activity distribution (popu-
lation coding). This representation is uniquely related to the origin of the coordinate sys-

�0

a r t( , )� �� �0

�

a r t( , )� � a r t( , )

a r t( , )� �� �0a r t( , )
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tem. In a second stage, the numerical value of the components of the shift vector can be 
computed by noise-insensitive integral operations, namely by the centroid extraction of 
this origin-related activity distribution. The computational accuracy is expected to be 
higher than for the straightforward method, because subtractions of large (coordinate) 
values do not occur. Besides the extraction of the global shift, local correlation can serve 
for other purposes as well, e.g. for the estimation of local deformations of the density 
function.

Applications

Surely the most prominent application of the described method is in the field of visual 
motion analysis, especially for tracking tasks, where real-time operation is of utmost im-
portance. Obviously, the shift vector – after its division by the time delay �0 – turns into 
an estimate of the true instantaneous velocity vector. It was shown elsewhere [2] that, in 
the case of centroid-based evaluations of the cross-correlation function k tt( , )

�� , compara-
ble estimates can be achieved by applying realizable low-pass filters (impulse response 
h t( )) instead of idealized delay-filters to the subunits. In these cases, the estimated time-
course of the velocity is a low-pass filtered (impulse response g t( )) version of the time-
course of the true velocity, with

g t h t t
h t H

t

( ) ( )� �
�

�
�

�

�
�� 	1 1

0
1

0
� d  ,  �h H h t t t� �	1 ( ) d  and H h t t� 	 ( ) d  . (8)

Although these properties were originally derived for rigid objects that translate in the an-
alyser plane, they still hold true for the here discussed general case. In short, it is possi ble 
to estimate – with known accuracy – the time-course of the centroid velocity of the 2D 
central projection of an (non-rigid) object that arbitrarily moves in 3D space in front of an 
unstructured background. More elaboration – especially of the local analyser concept – is 
needed in order to be able to deal with structured backgrounds and with several indepen-
dently moving objects.

A more general application, not restricted to the analysis of shifts in two dimensions, is 
the evaluation of the dynamics of distributed data representations in network structures. 
Although networks are confined to three dimensions, higher-dimensional data can be re-
presented in 3D or even 2D networks. Shifts of activity in such data-spaces, as Abeles 
([7], p. 74) conjectures them to occur in cortical circuits, can also be analysed by the com-
putational means described in the previous section, provided the adequate interconnection 
structure is implemented. Advantages of such highly redundant representations are their 
fault-tolerance as well as low demands concerning range and resolution of the values in 
the representation. There is good evidence that such principles are used by biological neu-
ral systems (see Abeles [7] and for a review Sejnowski [8]). Whether these ideas will be 
converted into technical applications is up to the future.



206

Acknowledgements

The author is supported by the “Volkswagen-Stiftung” under the grant I/65 914; he is 
grateful to E. Pöppel for encouragement as well as to R. Bamler for an essential hint.

References

[1] A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-
Hill, New York, 1965.

[2] H. Glünder. Correlative velocity estimation: visual motion analysis, independent 
of object form, in arrays of velocity-tuned bilocal detectors. J. Opt. Soc. Am. A 7: 
255-263, 1990.

[3] H. Glünder. ��-networks for motion and invariant form analyses. In: R. Eckmiller, 
G. Hartmann and G. Hauske (ed.) Parallel Processing in Neural Systems and Com-
puters. Elsevier, Amsterdam, pp. 357-360, 1990.

[4] D.E. Rumelhar t, G.E. Hinton and J.L. McClelland. A general framework for 
parallel distributed processing. In: D.E.Rumelhart and J.L. McClelland (ed.) Paral-
lel Distributed Processing 1. MIT Press, Cambridge/MA, pp. 45-76, 1986.

[5] B. Hassenstein and W. Reichardt. Systemtheoretische Analyse der Zeit-, Rei-
henfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüs-
selkäfers Chlorophanus. Z. Naturforschg. 11b: 513-524, 1956.

[6] H. Glünder. A dualistic view of motion and invariant shape analysis. In: J.C. Si-
mon (ed.) From Pixels to Features. North-Holland, Amsterdam, pp. 323-332, 1989.

[7] M. Abeles. Local Cortical Circuits. Springer, Berlin, 1982.
[8] T.J. Sejnowski. Neural populations revealed. Nature 332: 308, 1988.



Bernd Radig (Hrsg.)

Mustererkennung  1991
13. DAGM-Symposium
München, 9.-11. Oktober 1991

Proceedings

Unter Mitarbeit von Karlhorst Klotz

Springer-Verlag
Berlin Heidelberg New York London Paris

Tokyo Hong Kong Barcelona Budapest


