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Introduction

Most often, pattern recognition is identified with what is 
called classification, i.e. with the process of making deci-
sions about the membership of items to given classes of 
items. Of course, classes must be defined in terms of dir-
ectly measurable properties of the items of interest. Classi-
fication means to compare individual data of items with 
the definitions of all classes and to decide which definition 
applies best to the data. In monocular vision, data acqui-
sition from the static three-dimensional world is restricted 
to low-pass filtered and geometrically distorted central 
projections onto a two-dimensional surface (retina) which 
is spatially sampled by a finite number of non-linear sen-
sor elements of limited sensitivity, as well as restricted 
dynamic and colour-spectral range. Thus, the accessible 
amount of information about static items in the field-of-
view is completely contained in the signal values that are 
delivered by the ensemble of sensor elements. The so-
called retinotopic arrangement of these values or compo-
nents (picture elements or pixels) represents a pictorial 
pattern signal.

Differing from the initial view, one should state more 
appropriately that: “The main task in pattern recognition 
is to define pattern classes by means of configurations and 
suitable combinations of a given number of signal compo-
nents.”

Three idealized approaches to pattern recognition may 
be distinguished which essentially differ in how pattern 
classes are defined.

1. Template matching, in the restricted sense, deals 
with classes, each of which consists of a single known 
pattern signal. These classes are directly defined by spec-
ific configurations of all signal components, namely by 
the corresponding pictorial signals themselves.

2. Statistical pattern recognition is based on classes, 
each of which is constituted by a prototype pattern signal 
and versions which result from adding noise of known 

properties to the prototype. In order to avoid false classi-
fication, members of such classes must remain sufficiently 
similar in the statistical sense. The tolerable intraclass 
variations mainly depend on the task-specific interclass 
similarities. This kind of classes are most often defined by 
weighted sums of their members, or by those of represen-
tative samples. The resulting mean signals can be imag-
ined as somewhat “blurred” versions of the corresponding 
pictorial prototype signals.

3. Geometrically invariant pattern recognition is based 
on classes, each of which ideally comprises only one pat-
tern, i.e. a pattern signal and its well-defined geometrically 
transformed versions. Members of such classes show 
common properties in the deterministic sense. Although 
the geometric transformations may be confined to certain 
types, they are not assumed a priori to be restricted to 
certain ranges of their parameters. Under such highly 
variant conditions it is no longer possible to base accepta-
ble class definitions on the mean signals of classes, since 
the resulting blur will mainly leave the mean value of each 
type of signal as the remaining property which is anything 
but a characteristic pattern feature. Real pattern classes in 
the above-mentioned sense can be solely defined by non-
linear combinations of signal components.

In practice, combinations of these fundamental 
approaches are applied to pattern recognition problems. 
The choice of class definitions depends on parameters 
such as the number of signal components and classes, the 
noise statistics, the types and extent of geometric variance, 
and the percentage of tolerable false classification. As 
usual, economic reasons, i.e. limited resources, largely 
determine the character and scope of class definitions. In 
conjunction with restrictions imposed by the data acqui-
sition process, class definitions cause categorial interpre-
tations, i.e. “filtered views”, of the actual world.

Until now, technical pattern recognition, such as char-
acter recognition, deals with problems that are character-
ized by typically small and predetermined numbers of 
classes, minor geometric variance and preferably moder-
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70 Pattern Recognition by Man and Machine

ate noise. Thereby, costs can be held low compared with 
biological pattern recognition which deals with an enor-
mous variety of potential classes, extreme geometric vari-
ance and sometimes considerable noise. The maximum 
number of signals consisting of n components, each of m 
levels, is K mn�  which, for a modest 5 4�  sensor-array, is 
more than a million binary signals (m� 2). The resulting 
tremendous amount of possible templates – and thus 
classes – especially for large arrays, is slightly reduced if 
invariant pattern recognition is considered. Unrestricted 
shift invariance, for instance, leads to a reduction factor of 
about 1 n. More drastic reductions, however, are due to 
the fact that, in general, only those patterns which show 
pronounced spatial bindings are biologically relevant.

The following considerations start from the most basic 
form of classification that permits unequivocal signal 
reconstruction and which is applicable if all signals of in-
terest are known, i.e. if generalization is not required. It 
will be demonstrated that one can eliminate this constraint 
if one accepts less restricted class definitions. The main 
part deals with methods of geometrically invariant classi-
fication that permit ideal or nearly ideal class definitions. 
Translation invariant versions of the approaches are dis-
cussed and network structures for their parallel imple-
mentation are introduced. As far as possible, statements 
are illustrated by simple examples. A discussion of the 
self-organization and learning procedures of networks lies 
beyond the scope of the intended investigation concern-
ing the class definitions and costs of invariant classifier 
structures. Learning and adaptation procedures are docu-
mented, for instance in the books of Schürmann (1977), 
Rumelhart and McClelland (1986), and Pao (1989). In a 
final section, the results are summarized and assessed from 
technical and biological points of view. Problems assoc-
iated with noisy signals, i.e. all aspects of statistical pattern 
recognition are not treated in detail. This field, however, is 
well represented in the literature (Sebestyen, 1962; 
Fukunaga, 1972; Schürmann, 1977). In the next section 
fundamental formalisms are explained, thereby introduc-
ing the inevitable terminology of (pictorial) pattern recog-
nition.

Signal Representations and Signal 

Similarity

In order to circumvent most of the problems associated 
with image-data acquisition and preprocessing, all consid-
erations are based on pictorial signal representations of  
n� �� �max max spatially discrete and real-valued signal 
components. Number n denotes the degrees of freedom of 
a signal, i.e. its dimensions. For components of m equally 
distributed (quantization) levels, the entropy of a signal

representation is:

H n m Kmax ( ) ( )� �ld ld   in [bit] (6.1)

Maximum entropy, or maximum number of possible sig-
nals K, is assumed constant when assessing or comparing 
pattern recognition approaches.

Correct sampling of real-world scenes generally re-
quires analogue low-pass filtering (sampling theorem). 
Therefore, a single bright point in the world that may be 
up to a pixel in size, is blurred and consequently repre-
sented by several pixels of various grey values. In practice, 
this point spread is spatially restricted by the finite 
accuracy 1 m of the amplitude measurements. As a conse-
quence a “correctly sampled binary signal” is a contradic-
tion. Due to mostly unknown global variations in 
illumination, the signal mean, i.e. the mean intensity or 
grey value of an image, is of minor importance for pattern 
classification in biological, as well as machine vision. For 
this reason, the mean is often subtracted from the signal. 
The resulting bipolar image representations are advan-
tageous with respect to amplitude dynamics whenever 
multiplicative comparisons (correlations) are applied. 
Even more convenient are isotropically band-pass filtered 
pictorial signals in which all parts of constant intensity are 
set to zero, and derived versions (Marr, 1982; Watt 1988), 
as well as contour representations. Despite these reason-
able assumptions, the accompanying examples deal with 
signals that are distributions of ones and zeros. Fur-
thermore, a toroidal image array is assumed, i.e. the top 
row of the pictorial representation is connected to the 
bottom row and its left side column to the right side one. 
Thereby, the effect of signal variance can be studied even 
within very small arrays. These idealizations are introduced 
to help with concentrating on the essential issues of the 
examples.

For the purpose of signal analysis or classification it is 
sometimes advantageous to consider a pattern signal 
x( , )� �  as a vector 

�
x in an n-dimensional and orthonormal 

vector space.
�
x x x x x

x

� � �� �
�

( , ), ( , ), ( , ), ( , )max max1 1 1 2 � � ��
T

11 2, , , max maxx x x ni n� �� � � �
T

with � �
 (6.2)

Fig. 6.1 Pictorial pattern signal a1( , )� �  in a 3 3�  image-array 
(a), in vector notation (b), and its first three components in 
signal space (c).

a
��1

1

1

1

a1 �

�

	




������������

a
�
1�

�



����������

1
1
0
0
1
0
0
1
0

(a) (b) (c)

1 1
0

0
0
00

1
1

a11

a13

a12



Pattern Properties, Invariance and Classification 71

Every signal is represented by a single point in this n-di-
mensional space. If the components xi  result from basic 
measurements, i.e. if they are for example the values of 
pixels, then this space is called a signal space. It is called 
feature space if they are derived quantities.

For example, Fig. 6.1(a) shows the pictorial represen-
tation a1( , )� �  of one of the K � 512 possible binary 
signals of n� �3 3 pixels. Figure 6.1(b) presents the 
corresponding nine-dimensional signal vector 

�
a1. Due 

to the problems associated with the drawing of a nine- 
dimensional space, merely a vector 

�� �a a a a1 11 12 13( , , )T 
consisting of the first three components of vector 

�
a1 is 

sketched in Fig. 6.1(c).
The similarity of signals is evaluated through suitable 

comparison operations that are defined between the cor-
responding signal components of two signals, such as the 
squared difference, the absolute value of difference, or 
simply the product. For 0 1-signals the first two opera-
tions reduce to the logical NAND, and the third to the 
logical AND operation. Although not always optimum, 
multiplications are most often used and lead to simple 
mathematical formulations; they are considered here as 
well. Since it is desirable to characterize signal similarity 
by a single number, the sum of all elementary compari-
sons, i.e. products, must be computed. This yields the 
cross-correlation coefficient or inner product �y  of two 
signal vectors 

�
x1 and 

�
x2.

�� � � �

� �

�

�

�y x x x x

x x

i i
i

n� �
1 2 1 2

1

1 2
1

T

( , ) ( , )� � � �
�

��

�

� maxmax

��
�1

 (6.3)

for real-valued 
�
x1 and 

�
x2

Unfortunately, this measure of similarity suffers from 
what is called form�intensity crosstalk, i.e. pattern signals 
of rather different form can lead to large correlation 
coeffi cients provided their intensities are sufficiently high. 
This ambiguity can be avoided by normalizing the cross-
correlation coefficients with respect to the product of 
their vector lengths (standard normalization).

y y x x� � �� �� �
1 2  (6.4)

Unless stated otherwise, standard normalization is pre-
supposed for all linear classifier stages that are consid-
ered in what follows. Two signals are maximally different 
(orthogonal signals) if y� 0, and identical if y ya :� �1 
(normalized autocorrelation coefficient) and vice versa. 
This becomes evident when considering these situations 
in the signal space, where cross correlation means the 
projection of one vector onto the other. If the vectors are 
orthogonal the projection is zero, if they are parallel it 
becomes maximum. In pattern recognition, comparisons 

are to be made between various n-dimensional signal vec-
tors 
�
x and certain ( )n�1 -dimensional stored vectors 

�
wj . 

For this purpose, augmented ( )n�1 -dimensional signal 
vectors with an additional component x0 1�  are used. The 
sum of Equation 6.3 is then called a linear discriminant 
function

� � � � � � �y w x w x w x w x wj j j j i ji n jn0 1 1 2 2 � �  (6.5)

which can be computed in parallel within the structure 
shown in Fig. 6.2. At node �, the signal components xi , 
weighted by the coefficients wji , are summed. Hence, the 
weighted interconnection scheme is an implementation of 
a stored vector 

�
wj .

Equations 6.3 and 6.4 are illustrated by correlating bi-
nary pattern signals directly in the pictorial domain. It can 

Fig. 6.2 Circuit for the computation of cross-correlation 
coefficients � �y x wj j

� �T .

Fig. 6.3 Computation of correlation coefficients �y  in the 
pictorial domain. The advantage of normalized coefficients y is 
demonstrated in (b).
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be seen from Fig. 6.3(a) that the identical patterns – not 
pattern signals – a1 and a2 are more dissimilar than the 
signals a1 and b1 which are not translation equivalent. 
Their dissimilarity can also be expressed by the squared 
lengths of their difference vectors 

� �
a a1 2

2 6� �  and � �
a b1 1

2
2� � . This example gives a first impression of 

what is called the invariance problem. The necessity for 
normalization is demonstrated by the examples shown in 
Fig. 6.3(b). Normalization guarantees the unequivocal re-
lation between the correlation coefficient y�1 and the 
autocorrelation situation.

Template Matching and 

Deterministic Linear Classification

For reasons of simplicity it is assumed that, except for 
statistical pattern recognition, the frequencies of occur-
rence of every signal within a class, as well as those of all 
classes, are equally distributed.

Holistic template matching means to correlate a signal 
of interest 

�
x with k known and whole signals 

�
wj that are 

stored in the recognizing system. They represent holistic 
templates and one may say that each of them defines a 
class with exactly one member. For the purpose of classi-
fication, the computation of the k correlation coefficients 
is followed by the detection of the autocorrelation coeffi-
cient ya  (exhaustive search). If it cannot be found, then the 
signal is recognized as being a member of the k�1st class 
of unknown pattern signals. Except for the latter, class 
definitions are ideal because every class is identical with its 
signal. In principle, this approach permits one to distin-
guish and to perfectly reconstruct the maximum number 
of K pattern signals. Template matching is a special case of 
linear classification.

Changing the decision criterion from the detection of 
the autocorrelation coefficient to maximum detection re-
sults in deterministic linear classification, for which the k 

templates represent the prototypes of k classes. Linear 
classification makes use of the similarities between a signal 
and the prototypes. The greatest similarity, expressed by 
the highest correlation coefficient, determines its class 
membership. Every pattern signal that results in a single 
maximum can now be classified, i.e. a class of unknown 
signals does not exist. Class definitions depend on the 
number of classes and on the similarity of their prototypes 
and they are the more restricted the more classes are to be 
considered. For k K�  they approach the ideal class defini-
tions. Owing to cross correlation which represents a linear 
form (cf. Equation 6.5), and to the decision criterion 
“maximum detection”, each class is separated from all 
others by hyperplanes in the signal space. Maximum 
detection out of k correlation coefficients segregates the 
n-dimensional signal space, with its K possible signals, 
into k hypervolumes – similar to soap bubbles filling a 
closed box. Hence, classes are generally enclosed by dif-
ferently shaped polyhedral hypersurfaces. In other words, 
the members assigned to every class cluster in the signal 
space. This property makes linear classification well-
suited for the classification of noisy signals, where suffici-
ently similar signals are likely to belong to the same class. 
The linear classifier is optimum if all classes suffer from 
the same additive noise process. In this case of statistical 
pattern recognition the expected signals of the corres-
ponding statistical signal distributions, i.e. their mean vec-
tors or centroids in the signal space, are chosen as 
prototypes. Depending on the probability density func-
tion of the noise process, false classifications can occur. 
However, deterministic linear classification generally leads 
to class centroids that differ from the prototype vectors. 
Therefore, signal reconstruction may be carried out either 
according to the a priori prototypes, or with respect to the 
a posteriori determined centroids.

Holistic template matching, as well as deterministic 
linear classification with respect to k classes can be per-
formed within networks of the type depicted in Fig. 6.4. 
Decision-making in a template matching classifier is per-

Fig. 6.4 Structure for holistic template matching based on threshold logic units (TLUs) (a) and for general linear classification for 
which maximum detection (b) is applied, instead of ideal threshold characteristics (c).
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formed by k coincidence detectors that compare the corre-
lation coefficients with the implemented autocorrelation 
coefficient. They can be replaced by ideal thresholds �a 
that are adjusted to the autocorrelation coefficient ya  (cf. 
Fig. 6.4(a)(c)). That is why the processing unit within the 
dashed frame in Fig. 6.4(a) is called a classic “threshold 
logic unit” (TLU). The much more complicated process 
of maximum detection (cf. Fig. 6.4(b)) that is performed 
by what is called “winner-take-all” or “maxnet” circuits 
(Feldman, 1982; Lippmann, 1987), involves operations of 
so-called polynomial order q k�  which means the non-
linear combination of all k correlation coefficients yj  
(Uesaka, 1971; Hadeler, 1974).

For example, let us consider a classifier with k� 3 
classes that are defined by the prototypes wa1

, wb1
 and wc1

. 
Figure 6.5 shows them (left column) together with four 
signals a1, b8, c4 and d1 that are to be classified (top row). 
The matrix contains the normalized correlation coeffi-
cients yj. The classification results for holistic template 
matching and deterministic linear classification are shown 
below. For the latter, three of the signals are classified, 
while signal c4 lies on a separating hyperplane. For the 
former approach, three of the pattern signals are assigned 
to the fourth class of unknown signals and thus they are 
described as being neither signal a1, nor b1, nor c1. It is 
remarkable that signal b8  is not assigned to the class de-
fined by the prototype wb1

, although both are identical 
patterns, i.e. they are translation equivalent signals.

Geometrically Invariant 

Classification

After this introduction to basic mechanisms of linear 
signal classification, an important additional property is 
demanded which marks an essential difference between 
code deciphering and real pattern recognition, namely the 
invariance of classification under geometric transforma-
tions of the signals. Problems associated with reaching 
ideal definitions of invariant pattern classes are exempli-
fied for unrestricted two-dimensional translational vari-
ance of pictorial pattern signals on a toroidal image array 
and three approaches are compared with respect to class 
defi nitions and effort. Corresponding considerations hold 
for unrestricted rotations and size variance that can be im-
agined as converted into two-dimensional translations by 
the so-called log-polar mapping (Brousil and Smith, 1967; 
Casasent and Psaltis, 1976). Comparable strategies allow 
for invariance and good to ideal class definitions under 
other types of geometric variance. The achievement of 
multiple invariance, for example under the group of the 
similitudes or even that of the affine transformations, is 
much more costly or leads to only moderate, and for many 
applications insufficient, class-definitions (Doyle, 1962; 
Moore and Parker, 1974; Casasent and Psaltis, 1976; 
Kröse, 1985; Giles and Maxwell, 1987; Glünder, 1987).

Based on the elementary examples shown in Fig. 6.3(a) 
and 6.5, one may speculate that cross correlative similarity 
measures alone do not suffice for invariant classification. 
Signals of the same invariant pattern class, i.e. so-called 
transformation equivalent signals, may even be ortho-
gonal. Consequently, classes as defined by linear classi-
fiers, and thus based on the similarity of their members, 
in general do not define invariant pattern classes. In signal 
space the lack of signal similarity means no more clus-
tering of class members and, as a consequence for classi-
fication, more complicated, i.e. curved separating surfaces. 
The typically n members of a general translation invariant 
class which is defined on a toroidal image array of n pixels, 
are nicely distributed over an n-dimensional hypersphere 
– or hypercube for 0 1-signals – in signal space, with the 
class centroid at its centre. This implies that all members 
of an invariant class have the same distance �

�
xi  from 

their centroid 
�
xc  and that the members of classes with 

identical vector length 
�
xi  are intermingled on the same 

hypersphere. The difference vectors of a pattern

�
� � �
x x xi i c� �   with x xc n i

i

n

�
�
�1

1

�
 (6.6)

additionally show the same configuration in all n subspaces 
of equal dimensions. In other words, the signal distribution 
on the hypersphere “looks” the same when “viewed” from 
n orthogonal directions.

Fig. 6.5 Assignment of four pattern signals (top row) to three 
classes (left column) by the classifier structures of Fig. 6.4(a)(b). 
Classification results are shown below (zero stands for unknown 
pattern).
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Actually, some translation invariant pattern classes 
comprise less than n members, namely those exhibiting 
global shift invariance, such as periodic patterns and, most 
pronounced, structureless constants. Despite this fact, 
typically n members per ideal invariant pattern class are 
assumed for the following considerations.

For example, Fig. 6.6 shows the n� 9 members of each 
of the three translation invariant pattern classes A, B and 
C. These classes have the coinciding centroid vector � � �
a b cc c c� � � 4

9
1 1 1 1 1 1 1 1 1( , , , , , , , , )T and, due to the equal 

length of their signal vectors 
� � �
a b ci i i� � , their mem-

bers are dispersed over the same nine-dimensional hyper-
sphere of radius � � �

� � �
a b ci i i� �  1 49. .

Except for trivial cases, linear classification is not suited 
for pattern classification that is invariant under unrestric-
ted geometric transformations. For this purpose, more 
complicated separating surfaces are required which are 
commonly formulated as polynomials of sufficient degree 
and which result in polynomial discriminant functions. 
Instead of deforming separating hyperplanes, one can 
equally well apply the non-linearity to the signal compo-
nents and subsequently linearly classify the signals in the 
thus generated feature space (Schürmann, 1977). Its p� 
coordinates are the terms of a complete polynomial of 
degree p that is computed from an n-dimensional signal 
vector 

�
x.

p
n p

p
� � ��


���

	


���  or p

pn

p
�  

!
 for n p�  (6.7)

Therefore, each TLU of the subsequent linear classifier 
receives N p� � input signals, i.e. N weighting coefficients 
must be determined for every class.

Polynomial classification appears well suited for the 
assessment of other approaches because discrimination of 
invariant classes, i.e. the definition of classes, depends on a 
single parameter, namely the polynomial degree p which is 
directly related to the costs of classification through Equa-
tion 6.7.

Direct Translation Invariant 

Classification

A straightforward solution for ideal translation invariant 
classification is the so-called invariant list classifier. It uses 
typically n holistic template-matching classifiers per class 
in parallel. Thereby, n subclasses are defined, each of 
which comprises exactly one member of a translation in-
variant pattern class. Each class-specific output is ob-
tained by the summation of the n thresholded signals uji 
as depicted in Fig. 6.7(a) (grey inscriptions). The thresh-
olds, that represent a non-linearity of theoretically infinite 
polynomial degree p, are adjusted to the autocorrelation 
coefficients (cf. Fig. 6.4(c)). Consequently, at best one 
single output of all kn TLUs can be activated. Each of the 
k linear substructures, comprising n holistic templates of 
the same form, represents a holistic matched filter and 
thus each output vector 

�
yj is the correlation function of 

the signal vector 
�
x and the template vector 

�
wj . The costs 

for ideal invariant class definitions, i.e. for the possibility of 
unequivocal reconstruction of patterns irrespective of sig-
nal position, are N n 2 weighting coefficients per class.

As with holistic template matching, only known pat-
terns can be classified and it is therefore tempting to 
modify the invariant list classifier in the same way as tem-
plate matching was generalized thus yielding the linear 
classifier (cf. Fig. 6.4). For this purpose, all threshold units 
in Fig. 6.7(a) are replaced by a single maximum detection 
unit that is followed by k class-specific summation nodes. 
Every class is composed of n more or less compact and 
isolated subspaces in signal space. Although the number of 
weighting coefficients equals that of the invariant list class-
ifier, the computing effort is tremendously increased due 
to the maximum detection process which acts on typically 
q kn�  input signals. For tasks involving small and known 
numbers of invariant classes, redundant subclasses can be 
eliminated and manageable orders q may become attain-
able. In general, however, this approach is impracticable.

Fig. 6.6 The nine members of three translation invariant pattern classes that are defined on a toroidal 3 3�  image-array.
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Up to now, two necessary and unfortunately independ-
ent conditions for translation invariant classification with 
ideal class definitions can be indicated:

1. Invariance demands for non-linear classification, i.e. 
at least for p� 2, which in turn does not yet permit any 
statements about class definitions.

2. Ideal class definitions are achieved through list 
classi fication which, due to the thresholds, is of polyno-
mial degree p�!. The costs are characterized by N n 2 
weighting coefficients per class.

Polynomial Approach to Pattern 

Decomposition

In contrast to the Aristotelian point of view, one can try to 
base classification on pattern descriptions that no longer 
consist of single correlation coefficients and their underly-
ing holistic templates but are given in terms of composi-
tions from pattern elements. These elements must be 

known to the recognizing system and are detected through 
cross correlation of pattern signals with the corresponding 
templates in conjunction with subsequent decisions. Such 
templates shall be called masks 

�
h�, in order to differentiate 

them from the holistic templates 
�
wj . As with list classi-

fication, each of the � types of masks must be applied at 
every position of the toroidal image array, if unrestricted 
translation invariance is demanded. For every type of mask, 
the hereby introduced space invariant correlation filtering 
produces typically n correlation coefficients that constitute 
the filtered signal 

�
y�. Unlike normalized holistic matched 

filtering, the unambiguous detection of autocorrelation 
coefficients indicating the presence and the locations of 
certain pattern elements in non-binary signals, poses 
severe problems. Because the pattern elements are to be 
detected independently of the remaining pattern parts, 
holistic normalization according to Equation 6.4 is gener-
ally no longer applicable. Consequently, every single mask 
position must be individually normalized which requires 
�n normalization operations. For binary pattern signals, 
this tremendous effort is avoided if normalization of the 
filtered signals with respect to the mean of the binary 

Fig. 6.7 Network structures for list classification (grey inscriptions) and for polynomial pattern decomposition and “counting” 
(PDC) (black inscriptions) (a), as well as for multilinear pattern decomposition and “counting” (MDC) (b).
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masks is applied in conjunction with subsequent threshold 
detection. The filtered signals, and also the detected auto-
correlation coefficients, still depend on the positions of the 
input signals, i.e. they are by no means invariant. There-
fore, invariant measures, such as the number or sum of the 
autocorrelation coefficients that are contained in every fil-
tered signal 

�
y�, must be determined. Accordingly, a set of 

� types of masks 
�
h� leads to a �-dimensional vector 

�
s  of 

translation invariant features s�  which can be linearly 
classified.

Of course, the restriction to binary signals is not at all 
satisfying and, because the normalization problems are 
due to the binary character of the threshold decisions (cf. 
Fig. 6.4(c)), a generalization of the detection criterion to a 
non-linear function u f yi i� �� � � of non-negative deriva-
tive may be helpful. The counting of suprathreshold sig-
nals, i.e. the counting of “ones”, is then replaced by the 
summation of the non-linearly weighted results from cor-
relation filtering. If the transfer characteristic is formulat-
ed as a polynomial of degree p, then every invariant feature 
is a sum of typically n polynomials p iu�  produced from a 
linear discriminant function (cf. Equation 6.5).

p p i
i

n

i

p

i

n

s u y� � 	 �
	

	

� � �� �

� ��
� ��

1 01

 (6.8)

Therefore, this kind of feature extraction shall be called a 
polynomial approach to pattern decomposition and 
“counting” (PDC). Although arbitrarily valued mask 
coefficients are feasible, they do not make much sense 
without normalization of the resulting cross-correlation 
functions. For this reason, and in order to prevent the 
combinatorial explosion of mask types, 0 1-masks are con-
sidered which turns out to be an appropriate procedure 
(see the next section). The translation invariant feature 

vector generated thereby, is then fed into a linear classifier 
with standard normalization.

A parallel-computing structure for this kind of feature 
extraction is familiar from the list classifier shown in 
Fig. 6.7(a). The desired network is obtained by replacing 
the k holistic templates 

�
wj by � masks 

�
h�, and by replacing 

the thresholds by a single type of non-linear transfer char-
acteristic, thus leading to generalized TLUs, and finally 
by recognizing the classification result 

�
zlist  as the feature 

vector 
�
s  (black inscriptions). The second processing stage 

consists of a linear classifier network (cf. Fig. 6.4) that 
acts on this feature vector. This series connection leads to 
a succession of two linear summation stages that can be 
combined if the vectors 

�
u�  are used as features for the 

classifier section and if one accepts the involved increase 
in the number of weighting coefficients by a factor n. The 
resulting two-stage network is known as a Perceptron 
structure with one hidden layer (Rosenblatt, 1962; Minsky 
and Papert, 1969; Uesaka, 1971, 1975; Lippmann, 1987).

For example, let us decompose the binary patterns A, B 
and C (see Fig. 6.6). Because the resulting features are 
translation invariant, it suffices to investigate one member 
of every class, e.g. a1, b1 and c1. Four non-linearities are al-
ternatively applied to the correlation coefficients: a thresh-
old adjusted to �a q� , with q being the number of the 
non-zero components of the mask vectors, as well as para-
bolic 2

2u yi i� ��� � , cubic 3
3u yi i� ��� �  and logarithmic 

ln lnu yi i� �� �� �1  transfer characteristics. Only masks qh� 
with q� 2 and q� 3 are considered. Figure 6.8(a) shows 
the pictorial representations of all 2 4��  translation in-
variant 0 1-masks 2h� that exist within the toroidal 3 3�  
image array. The corresponding 3 12��  types of transla-
tion invariant 0 1-masks 3h� are depicted in Fig. 6.8(b).

In Fig. 6.9 the filtered pattern signals 2y� are shown for 
the three not normalized pattern signals. The correspond-

Fig. 6.8 Pictorial representations of all translation invariant 0 1-masks that exist in a toroidal 3 3�  image array and that contain 
two (a) and three (b) pixels of non-zero value.
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ing four-dimensional feature vectors �
2�s , for the threshold 

with �a� 2, as well as 2
2�s , 3

2�s  and ln
2�s , for the other non-

linearities, are represented in Table 6.1 in the left half of 
the left section. Obviously, pattern class A cannot be sep-
arated from class C, even if arbitrary non-linearities are 

applied! Class B, however, is linearly separable from the 
other two, either by feature 2

1s  or 2
2s , i.e. independent of 

the applied non-linearity. The right half of the left section 
of Table 6.1 contains the 12-dimensional feature vectors 

�
3�s , for the threshold �a� 3, as well as 2

3�s , 3
3�s  and ln

3�s , for 
the other transfer characteristics. Again class B is easily 
separated from the two other classes, e.g. by the first three 
components of all four feature vectors. The classes A and 
C cannot be separated on the basis of the parabolic feature 
vector 2

3�s . The segregation of all three classes is possible by 
one of the following features: 3

3
4s , ln

3
4s , 3

3
8s  or ln

3
8s .

Finally, the ultimate masks, namely the holistic tem-
plates 4

1 1
h wa a�  and 4

1 1
h wc c� , are tested for their suitabi-

lity to typify the translation invariant classes A and C. As it 
can be seen from Fig. 6.10, the dichotomy is not achieved 
with a parabolic non-linearity, even for this optimum con-
dition. However, linear separation is guaranteed for the 
other non-linearities and all those of higher polynomial 
degree than two. Obviously, thresholding results in tem-
plate matching known from list classification.

A fundamental question concerns the conditions for 
unequivocal pattern descriptions which, in conjunction 
with a template matching second stage and standard 
normalization, allow for ideal class definitions. It is not 
obvious, whether they can be achieved without holistic 
templates and, if so, how many masks of what type are 
required. At least the description of patterns by the num-
bers of their parts, which seems to imply the loss of 
knowledge about the relative positions of the parts (loss of 
pattern coherence), casts some doubts on this goal. Empi-
rical investigations (cf. the preceding examples) reveal that 
ideal translation invariant class definitions are not 
achieved if the number q of non-zero components of the 
mask vectors qh

�
� is less than three, or if the polynomial 

degree p of the non-linearity is less than three, even if all 
2� types of 0 1-masks that exist in the image array, are 
applied. As mentioned, the dimensionality � of the feature 
vector determines the number of weighting coefficients 
per class of the subsequent classifier stage. Hence, with

q
n

n

q
� 

�

���
	


���

1   or q
qn

q
� 

�( )

!

1

 for n q�  (6.9)

and leaving the number of the binary mask coefficients out 
of consideration, the necessary condition for translation 
invariant classification with ideal class definitions can now 
be reformulated:

p� 3 and N
n 

2

6
 for n� 3 (6.10)

Although more specific than the statements given at the 
end of the previous section, this condition does not yet 
clarify whether p� 3 and q� 3 are sufficient for ideal 
pattern reconstructions.

Fig. 6.9 Correlation functions computed from three pattern 
signals and the masks of Fig. 6.8(a).

Table 6.1 Translation invariant feature vectors of three 
patterns which are computed through PDC with four different 
non-linearities (left section) and MDC (right section), both for 
polynomial orders two and three.

2 2
2
2

2
2
2

2 22 2 2

1
1 1
1

2
1
1

1

1 1
1 1

1 1

2

2

1
1 1
1 1 1

1 1 1

1 1

1

121 1
1 1
1

1

2

1 1

1
1 1 1

11
1

2

1 1 1

1 1
1

1 1

1
1

1 1 1
1 1

1

1 1

1

2y1

a1

b1

c1

2y2
2y3

2y4

A

B

C

0 18 30 7.5
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Multilinear Approach to Pattern 

Decomposition

It must be concluded from the empirically gained condi-
tion p q� � 3 that only a single term of each polynomial 

3
3u i�  (cf. Equation 6.8) is actually responsible for ideal 
translation invariant class definitions, namely the so-called 
trilinear term 3d i�  which comprises those q� 3 signal com-
ponents that are selected by mask 3h i� . For every feature 

3
3s� this corresponds to a sum of n well-defined trilinear 
terms, i.e. to a special trilinear form 3r�. The correspond-
ing q-linear form is defined by

q q
i

i

n

i i

h

q

i

n

r d h x� � � � � �
�

� � �
� �

#
�

� $�
1 1

0
1

 (6.11)

where x i� � is one of those q components of a signal vector �
x that are selected and possibly weighted by the q non-
zero components h i� �  of mask vector q ih

�
� . For 0 1-masks 

that are presupposed in what follows, such special kinds 
of q-linear forms are identical with autocorrelation coeffi-
cients of order q of a signal 

�
x.

Obviously, pattern elements are also defined by the 
multiplication schemes that are expressed by 0 1-masks 
qh�. They are represented through multilinear terms, i.e. 
by products of signal components. In other words, non-
zero terms indicate the presence of the corresponding ele-
ments (coincidence detection). It is remarkable that this 
kind of element detection is completely different from 
mask matching, because neither cross correlations of 
masks and signal, nor subsequent decisions take place. In 
order to obtain unrestricted translation invariant pattern 
descriptions, each multiplication scheme must be applied 
at every position in the image array and all terms stem-
ming from the same scheme must be summed (generalized 
counting) which results in multilinear forms. Just as with 
the polynomial approach (cf. Equation 6.8), normalization 
of the pattern signals is not necessary. This kind of feature 
extraction shall be called a multilinear approach to pattern 

decomposition and “counting” (MDC). Autocorrelation 
coefficients of order q� 2 form a translation invariant �-
dimensional feature vector 

�
r  that can be classified by a 

normalized linear classifier.
For example, the computation of the translation invar-

iant feature 3
3

8s  (cf. Table 6.1) involves n� 9 polynomials 

3
3

8u i of third degree and order that are listed below. They 
are defined by the mask 3

8h  (see Fig. 6.8(b)) and, in the 
simplest form, by the cubic non-linearity 3

3u yi i� ��� � :

3
3

81 1 4 9
3

1
3

4
3

9
3

1 4 9

1
2

6

3

u x x x

x x x x x x

x x

� � �
� � � � �

( )

44 1
2

9 4
2

1 4
2

9 9
2

1 9
2

4� � � � �� �x x x x x x x x x x ;

3
3

82 2 5 7
3

3
3

83 3 6 8
3

3
3

84

u x x x u x x x

u

� � � � � �
�

( ) ; ( ) ;

(xx x x u x x x

u x x

4 7 3
3

3
3

85 5 8 1
3

3
3

86 6 9

� � � � �
� � �

) ; ( ) ;

( xx u x x x

u x x x

2
3

3
3

87 7 1 6
3

3
3

88 8 2 4
3

3

) ; ( ) ;

( ) ;

� � �
� � � 33

89 9 3 5
3u x x x� � �( ) ;

Therefore, the trilinear form that is contained in the fea-
ture polynomial 3

3
8s  is

3
8 1 4 9 2 5 7 3 6 8 4 7 3

5 8 1 6 9

r x x x x x x x x x x x x
x x x x x

� � � � �
� xx x x x x x x x x x2 7 1 6 8 2 4 9 3 5� � �

which, for the pattern signal a1, turns out to consist only of 
the single term 3 85 5 8 1 1d x x x� �  and, for the pattern sig-
nal c1, is even zero. This difference is indeed responsible 
for the difference of the corresponding feature values 3

3
8s  

that are shown in Table 6.1.
Figure 6.7(b) shows a network for the parallel com-

putation of multilinear forms. Compared with Fig. 6.7(a) 
(black inscriptions), the summation nodes are replaced by 
multiplication nodes and the non-linear transfer charac-
teristics are omitted, i.e. the TLUs are substituted by 
product units (Glünder, 1986; Giles and Maxwell, 1987; 
Durbin and Rumelhart, 1989). Owing to the form of 
Equation 6.11, these structures belong to the category of 
so-called �"-networks (Rumelhart et al., 1986). The con-
siderations concerning the subsequent linear classifier net-
work that were made in the last section, apply here as well.

Fig. 6.10 Cross- and autocorrelation functions of two signals (a) and the resulting PDC-features (b). Linear classification is possible 
except for the parabolic non-linearity.
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By Condition 6.10 it is not yet stated that q� 3 is a 
sufficient condition for ideal translation invariant pattern 
descriptions. However, because this crucial parameter is 
responsible for the number of features and thus deter-
mines the costs of invariant classification, the finding 
reported in what follows is of the utmost importance. It 
has been proven by several authors, firstly by McLaughlin 
and Raviv (1968), for binary pattern signals by Minsky 
and Papert (1969), and for complex-valued signals by 
Lohmann and Wirnitzer (1984), that any pattern of finite 
extent is perfectly described by its complete triple-auto-
correlation function, except for its translational position 
(translation invariance). This function comprises all 
triple-autocorrelation coefficients that are pure trilinear 
forms but also all autocorrelation coefficients that are 
made up by sums of mixed terms, as well as the coefficient 
which is the sum of the cubes of all signal components. 
Actually, ideal invariant class definitions require pattern 
descriptions either by the whole triple-autocorrelation 
function or, alternatively, by all 3�  trilinear and 2� bilinear 
autocorrelation coefficients, both in conjunction with sub-
sequent template matching and standard normalization. 
In general, this holds if no a priori information (for exam-
ple, about the size of a pattern) is available. In not consid-
ering the binary mask coefficients, the necessary and 
sufficient condition for translation invariant classification 
with ideal class definitions is thus given by:

( )q q� � �2 3and N
n 

2

6
 for n� 3 (6.12)

This result expresses the primary role polynomial order q 
plays in ideal invariant classification and it demonstrates 
that the polynomial degree p is important only insofar as 
multilinear terms are to be generated through polyno-
mials, e.g. by generalized TLUs. Autocorrelation can be 
generalized in order to formulate and analyze features that 
are invariant under various other geometric transforma-
tions (Glünder, 1987).

Although the considerations about pattern recognition 
from triple-autocorrelations do not generally hold for sig-
nals on toroidal image arrays, such pattern descriptions are 
now to be exemplified for the pattern classes A, B and C 
(cf. Fig. 6.6). In the right section of Table 6.1, the complete 
translation invariant feature vectors 2

�
r  and 3

�
r  for the three 

classes are given. The former are bilinear forms, computed 
according to the 2 4��  types of multiplication schemes 
shown in Fig. 6.8(a), and the latter are trilinear forms that 
result from the 3 12��  configurations depicted in 
Fig. 6.8(b). Again, classes A and C are not separable on the 
basis of the feature vector 2�r , because their members are 
related by point inversion and thus have identical second 
order autocorrelation functions. However, all three pat-
terns are linearly separable if the feature vector 3

�
r  is used, 

but no longer with respect to a single component of the 
feature vector, as it was the case with the results given in 
the right half of the left section of Table 6.1.

Discussion and Assessment

Three approaches to unrestricted translation invariant 
classification have been compared. The criterion was the 
effort per class for ideal class definitions, i.e. for the feasibi-
lity of unequivocal pattern reconstructions from the classi-
fication results. The effort was specified by the number N 
of adjustable weighting coefficients for each class that are 
necessary for correct classification. Somewhat surpris-
ingly, the minimum costs for the approaches turn out to 
be of the same order, namely N n 2, for n-dimensional 
pattern signals on a toroidal image array. The same holds 
for the normalization effort. Although the general polyno-
mial classifier with p� 3, and therefore about n3 weights 
(see Equation 6.7), appears to be more costly, it equals the 
MDC-approach if appropriate grouping is applied to the 
polynomial terms.

On the basis of this outcome, it would be false to con-
clude that all three approaches are equally well suited in 
practice. Invariant list classification, for instance, is only 
applicable if the pattern signals are exactly those stored as 
templates, because, due to the enormous costs of maxi-
mum detection (q kn� ), its generalization turns out to be 
impractical in the case of many classes. Therefore, this 
method is restricted to well-defined technical classifica-
tion problems and it is not suited for biological pattern 
recog nition. The PDC- and MDC-approaches do not 
suffer from this short-coming as their features can simply 
be classified by a general linear classifier (q k� ). Owing to 
the many polynomial terms that constitute features in 
PDC-systems, processing structures must cope with the 
involved dynamic range which, depending on the kind of 
signal representation, can be very large. On the other 
hand, signal processing must be highly accurate in order 
to represent the crucial trilinear terms that are “riding” on 
sums of otherwise unimportant polynomial terms. In this 
regard, MDC-systems are more economic and robust (cf. 
Fig. 6.11).

Another aspect of assessment is the reduction of costs 
if classification of restricted invariance or based on not 
ideally defined classes is of concern. Under such condi-
tions, two alternative strategies must additionally be con-
sidered, both of which are related to list classification. 
Since the effort of classification depends directly on the 
dimensionality of the signals, its reduction is an effective 
means for cost reduction. Linear reduction of dimensions 
uses cross correlation with a minimum number of tem-
plates that maximally decorrelate the patterns under con-
sideration. The resulting correlation coefficients must 
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then be non-linearly classified. The other approach uses 
adequately defined subclasses. Again, cross correlation is 
applied but this time with templates that produce a feature 
space in which all signals of interest are split into a mini-
mum number of linearly separable subclasses. After sub-
classification, the results are grouped in order to obtain the 
class-specific output signals (cf. Fig. 6.7(a)). In the case of 
few classes, a considerable decrease of the costs can be 
achieved by both methods. Because this reduction relies 
on the clever choice of highly task-specific templates, these 
approaches are mainly suited for applications where the 
number of classes is predetermined. Otherwise, any addi-
tional invariant class necessitates the change of all tem-
plates. Owing to this lack of flexibility, these methods are 
biologically implausible although they have become stan-
dard in technical domains.

Restriction of signal variance permits a proportional 
decrease in the number – not the types – of templates, 
masks, or multiplication schemes that serve for list, PDC- 
and MDC-based classification respectively. This is pos-
sible, because (translation) invariance is exclusively due to 
the appropriate summation of non-linearly weighted cor-
relation coefficients, or multilinear terms that correspond 
to a certain type of template, mask, or scheme, and which 
are extracted at different (translational) positions, accord-
ing to the extent of the geometric variance. Pitts and Mc-
Culloch (1947) called this procedure the averaging of 
different types of functionals that are evaluated from the 
transformed signals, over the groups of the underlying 
transformations. These authors also recognized that the 
number of types of functionals which are necessary in 
order to completely characterize a signal is extremely 
large, and that the nervous system uses perhaps less than 
complete information for the recognition of shapes. It 
should be remembered that every single “decomposition 
and counting”-feature is invariant, i.e. a reduction in the 
number of features does not affect the invariance but the 
precision of the pattern descriptions. In this sense, good 
invariant descriptions even require certain types of vari-
ance, namely all those geometric transformations that 
relate the pixels of a pattern. That is why two-dimensional 

translations, as well as expansions in conjunction with 
rotations are well suited for ideal pattern characterizations. 
Obviously, a reduction of the number of template types is 
not applicable to invariant list classification. However, for 
both decomposition approaches, a restriction, for instance 
by a factor n, to all 2 2� n  possible features, does not 
cause a severe loss in descriptive power. With this specially 
restricted feature vector, patterns that have identical sec-
ond order autocorrelation functions can no longer be dis-
tinguished, for instance those related by point inversion.

Unfortunately, the decrease in descriptive power that is 
caused by fewer features, happens more rapidly for the 
PDC- than for the MDC-features, at least if non-negative 
signals are considered. This is due to the principal fact that 
a PDC-feature cannot unambiguously signal the presence 
or absence of a form element in patterns which in turn is a 
consequence of the normalization problem. Owing to the 
coincidence-detection character of multiplication, MDC-
features are ideally suited for such decisions (cf. Fig. 6.11), 
especially if they are computed from sparsely coded signal 
representations, i.e. from those that contain only a few 
non-zero values. Even if coincidence detection is taken 
literally, i.e. if it results in binary decisions about the pres-
ence of inner pattern bindings, the invariant description as 
well as the perfect reconstruction of the binary versions of 
patterns is still possible. (For the latter task all 3�  features 
are required but not the 2� bilinear forms.) PDC-systems 
lack this valuable property because pattern information is 
essentially contained in the amplitudes of polynomials.

To give an example. It is demonstrated that the PDC-
approach does not permit the unambiguous and transla-
tion invariant detection of single form elements in non-
binary and unipolar patterns. For this purpose the 
grey-valued patterns E and F – both of the same mean – 
the mask 3

10h  (cf. Fig. 6.8(b)), as well as the cubic non-
linearity 3

3u yi i� ��� �  are considered. Although pattern 
E contains the form element 3 10h  and pattern F does not, 
they both lead to the same and considerably high feature 
value 3

3
10s  (Fig. 6.11(a)). The corresponding MDC-fea-

tures reflect this pattern difference and they are of much 
lower value (Fig. 6.11(b)).

Fig. 6.11 Detection of the form element 3
10h  (see Fig. 6.8(b)) in two patterns by means of PDC (a) and MDC (b).
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Extraction of Invariant Features by 

(Artificial) Neural Networks

From the previous considerations one can conclude that 
the extraction of invariant features by PDC- and MDC-
approaches meets essential requirements of biological pat-
tern recognition, namely the flexibility concerning both, 
the type and extent of invariance, and the precision of the 
pattern descriptions. On the other hand, the role classi-
fication plays in biological pattern recognition is not clear 
at all and it is questionable whether a properly normalized 
linear classifier stage actually follows feature extraction.

It is evident that PDC-approaches, such as Perceptrons, 
are based on the model neurone that was introduced by 
McCulloch and Pitts (1943) for other reasons. This model 
represents a TLU that was later generalized by the intro-
duction of various other non-linear transfer characteris-
tics. A generalized TLU-model neurone computes the 
weighted sum of all presynaptic activities and produces 
axonal impulse rates that are proportional to the non- 
linearly weighted somatic potential. Because real neurones 
have several thousand synapses and, assuming realistic 
time constants at the destination neurones, can only repre-
sent less than 50 distinct levels at their axonal outputs 
(Barlow, 1963), accurate signal processing becomes diffi-
cult under the generalized TLU-paradigm, even if only a 
small percentage of the inputs are active. Opposed to the 
neuroanatomical evidence, it was demonstrated here that 
universal PDC-systems optimally consist of masks that act 
on very few pixels which in turn would call for “neurones” 
with such few inputs.

MDC-systems require computing units with many 
non-linearly interacting inputs and with a single and 
substantially linear output. Such �"-model neurones 
perform conjunctive, e.g. multiplying operations on 
neighbouring synaptic inputs and sum the multilinear 
terms thus generated. The discovery of dendritic con-
ductance changes that depend non-linearly on the local 
dendritic membrane potential, i.e. in general on potentials 
that are produced by more than one synaptic input, indi-
cates a possible physiological mechanism that can serve 
for coincidence detection (Dingledine, 1983, MacDermott 
and Dale, 1987). Because non-linear processing, i.e. the 
selection of signals, takes place at the input of such units, 
overload is no longer a problem, provided the signals are 
sparsely coded. Owing to these capabilities, a single �"-
model neurone evaluates a multilinear form of moderate 
polynomial order that consists of several hundred to a 
thousand terms. In other words, it can compute, for 
instance, a translation invariant feature from a 30 30�  
image array. Features from larger arrays can be obtained 
by summation of such locally computed features if the 
local areas have an overlap of at least the extent of the 

underlying multiplication scheme. It can be shown that 
ideal pattern descriptions by MDC-features are exclu-
sively based on all those trilinear and bilinear terms that 
contain the products between the values of the two most 
distant pattern pixels. Consequently, large patterns can-
not perfectly be characterized through local operations (cf. 
similar conclusions by Minsky and Papert, 1969). Finally 
it is noteworthy that coincidence detection between few 
synaptic inputs can also be regarded as a consequence of 
self-structuration that starts from a signal representation 
of certain a priori frequencies of occurrence of the signal 
components (Phillips et al., 1984). The probability of a 
coincidence is the product of the a priori probabilities of 
the contributing events, provided they are statistically 
independent, which in turn is a question of spatial signal 
coding. In other words, the chance for a coincidence 
decreases exponentially with the number of the events 
involved. If self-organization on the basis of synaptic 
modifications requires the frequent success of coincidence 
(local dendritic version of Hebb’s postulate, cf. Kelso et 
al., 1986; Nicoll et al., 1988), then there is little chance for 
the formation of coincidence detectors with many inputs.

In conclusion, MDC-systems are advantageous if inva-
riance and flexibility are demanded from a pattern recog-
nition system. Mainly for computational reasons and for 
their unequivocal definition even of single features, 
MDC-systems are superior to PDC-systems. The MDC-
principle is well-established in the field of commercial 
character recognition (Schürmann, 1977) – mostly in the 
form of parabolic classifiers – and there is evidence that it 
plays a role in neural pattern processing too.
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