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ZIT-NETWORKS FOR MOTION AND INVARIANT FORM ANALYSES
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Spatiotemporal relations that are represented by properly chosen multilinear forms of
signal values are shown to be useful for form-independent motion analyses and for the
extraction of form descriptors that are invariant under geometric transformations. Both
tasks are performed by identical parallel computing ZIT-networks.

1. INTRODUCTION

The extraction of geometric relations between two or more points of a pictorial pattern plays a fun-
damental role in the evaluation of form-related pattern properties that are invariant under geometric
transformations. Since any kind of statements about the presence or the degree of such relations in-
volve decisions, nonlinear combinations of the signal values at two or more sites of a static image
are inevitable. Multilinear terms, i.e. products of signal values that are taken from an image, repre-
sent convenient measures of spatial coincidences (Figure 1a). Motion analysis, on the other hand,
additionally requires the evaluation of temporal relations, i.e., between those values of a continu-
ously time-varying image that are found at the same location but are separated by one or more time
intervals (Figure 1b). Together with a system for the analysis of spatial relations, spatiotemporal
coincidence detection (Figure 2), i.e., motion analysis becomes feasible. It is remarkable that, from
this point of view, the gradient and the correlative approaches to motion analysis do not differ.

For both applications, pooling of defined sets of multilinear terms, i.e., the computation of multi-
linear forms, is requisite if invariance of the form descriptors under geometric transformations, or
independence of the velocity estimates from object form are demanded. These conditions are dual
and, as will be shown, can be established by a common computing structure that is itself based on
this dualism, in so far, as biological processing is concerned: Firstly, there is no need for invariant
features if there is no variance, i.e., neither motion nor movement. Secondly, there is no self-orga-
nization of the highly specific motion analyzer networks if they are to function dependent on object
form, because great numbers of equal stimuli are needed for the formation of suitable networks.

b,t) b(x,t) b(Iet) b(;,t) b, b(r+p,t)

gbm"'w e(r,p,) = |b(r+p,H) b(x,t-1)

FIGURE la FIGURE 1b FIGURE 3
Detection of spatial relations Temporal coincidence detector multi- Simplest processing unit for the
by simultaneous multiplica- plying m signal values sampled at  detection of spatiotemporal rela-
tion of q signal values different times at the same location  tions

Reprinted from
Eckmiller R., Hartmann G. and Hauske G. (eds.) (1990) Parallel processing in neural systems and computers. North-Holland, Amsterdam, pp. 357-360.



358 H. Gliinder

2. BASIC COINCIDENCE DETECTORS

Figure 1a,b shows schematics of multiplying computing units for the extraction of spatial and tem-
poral relations from a continuously time-varying image b(r,t), with r=(x,y)T, which result in g- and
m-linear terms respectively. In Figure 2 a general circuit for the analysis of spatiotemporal relations
is depicted which leads to qm-linear terms. Although terms of orders gqm>2 may be needed to solve
special tasks in motion and invariant form analysis, the simplest spatiotemporal detector of order
qm=2, with T,,=T,=const and 1,,=0, is used in what follows. Such a unit represents a so-called
p-tuned velocity detector with its tuning velocity defined by v, =(r,-1,)/T,=:p /1, (Figure 3). In
other words, this bilocal detector delivers a coincidence signal e‘&‘,g,ti i% a bright spot moves from
point £ straight to point r+p with the constant speed ly, |-
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FIGURE 2
General analyzer unit for spatiotemporal relations of time-varying images producing qm-linear terms

3. MOTION ANALYSIS

If a single detector unit of the type shown in Figure 3 is confronted with motion of more complex
but still rigid patterns b(z), it will in general give rise to form-related deviations from the ideal veloc-
ity estimate. This is due to the well-known correspondence and window problems (see for instance
[1]). They can be eased or even eliminated if extended arrays of elementary detectors are applied in
combination with suitable schemes for the pooling of their coincidence signals. For the analysis of
frontoparallel translations, for instance, a spectrum of differently tuned units must be isotropically
arrranged around every location of the image representation and the coincidence signals of all units
with identical vectors p must be summed. Thereby, the modified autocorrelation function (MACF)
of second order is computed, with each of its coefficients representing a bilinear form.

g = [[ b +p, 0 bix t-1,) dr for real-valued b(r,t) 1

Form-independent velocity estimates v d(t)=,12d(t)/t can be obtained from the MACEF by evaluating
the coordinates p,(t) of its absolute maximum which is always defined if the pattern is nonperiodic.

In order to analyze expansions or frontoparallel rotations, the input signals to each detector unit are
taken from one of the straight lines of a line-bundle, or from one of the circles of a set of concentric
circles respectively. In the first case, summation is applied to all bilinear terms that stem from units
whose input positions are related by the same scale factor s with respect to the point of intersection
of the line-bundle. In the second case, all terms are summed that result from units whose input posi-
tions are related by the same rotation angle y with respect to the centre of the circles. A universal
formulation of such systems is given by the generalized MACF of order q which also allows for
any kinds of impulse responses h(t), and not only of the ideal delay h,(t)=06(t-t,).

W2y 2, 2oy hd = ] ilj[b(’]'@i){[},t)*hi(t) 8@ldr for real-valued b(®) (2)

Operator T(z,) denotes mappings r —r' defined by parameter vectors z.. It was shown recently [2]
that form-indlependent velocity estimates, e.g. of frontoparallel translations v (t)=Qc(t)/t , can also
be obtained from systems comprising bilocal detectors with lowpass filters of arbitrary characteris-
tic, if the unequivocally defined centroid location p (t) of the generalized MACF is used in conjunc-
tion with a characteristic time constant T, of the filter. Since the evaluation of centroids relies on in-
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tegral operations, it is less susceptible to noise and less costly than maximum detection.

Owing to the specific network structure, i.e., to the geometric arrangement of the detector units in
the plane of analysis, each analyzer system 'views' a specific aspect of object motion. Consequent-
ly, certain kinds of compound motion are decomposed according to the implemented systems.
Cycloidic motion of points on a rolling wheel, for instance, can be decomposed into their transla-
tory and rotatory components. This selectivity allows one to deal with motion of nonrigid objects as
well [2]: Each system reacts to motion of moderately deforming patterns by adequate deviations of
its analysis from the one that would have been caused by the corresponding rigid motion process.
The fact that velocity estimates are independent of the object form is essentially due to the spatial
integration of motion information. Globally acting systems, however, can only analyze motion of a
single object correctly and thus, among other reasons, local autocorrelative networks are required.
They are feasible, if the regions of analysis allow at least two applications of the considered trans-
formation parameter and if the overlap between neighbouring regions measures its single applica-
tion. In order to obtain regional or global MACEFs, the locally computed results need simply be
added. This grouping especially makes sense if it depends on size and location of the object [2,3,4].

Higher order analyses (cf. Figure 2) become necessary if analyzer systems are to detect not only
specific types of motion but velocity profiles, such as those caused by motion or movement along
the line of sight. In this case, scale or expansion factors are a hyperbolic function of time which
may be analyzed by a third order system (qm=3) built from elementary detectors incorporating two
different delay times t,,>T,,#0 and 1,,=0. However, this approach to the analysis of depth motion
depends strongly on object size. One can cope with this problem by using a two-stage design of
second order systems which computes the reciprocal of the 'time to contact' [5].

4. INVARIANT FORM ANALYSIS

If motion analyzers of the type described by equation (2) are confronted with stimuli that remain
static for periods longer than the maximum duration of its impulse responses hy(t), their reaction is
described by the generalized autocorrelation function (ACF) of order q

q
U,z 72 = [| TI6(T@)(r))dr  for real-valued b, €)

with each of its coefficients representing a q-linear form. Generalized ACFs that depend on a single
type of transformation are inherently invariant under this very transformation. This holds true for
every single autocorrelation coefficient, since all g-linear terms that stem from image points that are
related by the same set of transformation parameters z,...z...z, are summed. The invariance of
autocorrelative features is exclusively due to this spatial averaging. Hence, the extent of feature in-
variance for a given type of geometric transformation depends on the number of g-linear terms that
contribute to a coefficient. For certain groups of geometric transformations it is even possible to de-
rive form descriptors from the corresponding generalized ACF that are multiple invariant, e.g. un-
der the whole group of similitudes [6]. Such features describe patterns by their general symmetries,
self-congruences and self-similarities, i.e., by categories known from Gestalt-psychology.

Even if all coefficients, e.g. of the translatory second order ACF 2k _(p), are available, they do not
unequivocally determine the form of a pattern, i.e., its exact reconstruction is not possible. This
situation is due to the loss of information about the relative positions between the two-point rela-
tions of a pattern (loss of coherence). The translatory third order ACF 3k (p,,p,), with p,=0, how-
ever, perfectly defines patterns of finite extent, except for their shift position (invariancei and thus
allows for the unequivocal reconstruction of their form [7,8,9]. Comparable considerations hold for
the generalized triple ACF 3k (z,,z,), with z.=(s,,,)T and z,=0, which depends on scale factors s
and rotation angles . This bedomes immediately clear if one imagines an image representation in
polar coordinates with a logarithmically graded radial axis, for which both types of transformations
are changed into pure translations. Pattern description by this ACF is rotation as well as scale in-
variant with respect to the considered fixed point. The reconstruction of the pattern form is unequiv-
ocally possible but will not include size and angular position. It remains to be mentioned that pattern
reconstruction in both cases is essentially based on all those autocorrelation coefficients that depend
on the parameter vector by which the two most distant points of a pattern are related. Therefore, lo-
cal analyzers, even if the results of many of them are combined, cannot provide perfect invariant
pattern descriptions (cf. the similar conclusions in [9]).
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5. COMPUTING ELEMENTS FOR MULTILINEAR FORMS

The direct computation of a g-linear form is performed by a XI1 computing element which contains
coincidence detectors and sums their g-linear terms. Hence, each coefficient of a generalized MACF
can be calculated by a single XI1 element, provided the input signals are properly grouped. A poly-
nomial approximation, using threshold logic elements (TLUs), results in cross correlation coeffi-
cients of the time-varying image and spatiotemporal masks that consist of q nonzero values. These
masks are the counterparts of the q signal values which contribute to each g-linear term. The com-
puted coefficients are nonlinearly weighted and summed according to the same schemes that serve
for the production of the corresponding g-linear forms. A necessary condition for their approxima-
tion is a nonlinearity of polynomial degree p>q. The most severe problem associated with TLU-ap-
proaches is the fact that the desired g-linear terms are contained in sums with many other polyno-
mial terms. The latter are either redundant, if, e.g. all q signals are nonzero, or they may distort the
result, if, e.g. one of them is zero: (1+1+1)3=(1.5+1.5+0)3. Furthermore, processing must cope
with a large signal dynamic and provide sufficient accuracy in order to evaluate the contribution of
g-linear terms to the polynomials. Obviously, the situation is aggravated after pooling.

Since networks of orders q>3 do not considerably improve the performance but — owing to the
exponential decrease of the probability for coincidences —, have little chance to self-organize, the
optimum order is estimated to be 2<q<3. "TLU-neurons' that perform cross correlations by linearly
weighted synaptic transmission of signal values should therefore receive only about three input
signals which is inconsistent with neurobiology. A direct evaluation of g-linear forms by TLUs,
i.e., through masks of large q in conjunction with polynomial degrees 2<p<3, is in general not
feasible for the pooling schemes considered here. ‘ZII-neurons' perform coincidence detection by
nonlinear dendritic interaction of neighbouring synaptic inputs and produce outputs that essentially
are sums of coincidence signals. It is conjectured that coincidence detection in real neurons is based
on dendritic conductance changes that depend in a highly nonlinear way on the membrane potential
[10]. Synaptic modification, i.e., self-structuring, is assumed to depend on the success of the coin-
cidence [11]. Thus, learning and processing are based on the same local mechanism. However, a
global rule is additionally needed for the self-organization of the highly specific pooling structure.
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