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Abstract

Two universal types of networks for the invariant recognition of pictorial patterns are compared
with respect to function, structure and costs. The main stage of both networks serves for the extrac-
tion of features that are invariant under certain types of unrestricted geometric transformations, e.g.
rigid translations. Both approaches are conceptualized for unequivocal class definitions and thus for
the feasibility of perfect pattern reconstructions. Although the networks are structurally different,
they are to a high degree functionally equivalent. The costs, i.e., the number of weights per class
that must be adjusted in order to obtain ideal and invariant classification, turn out to be almost the
same for both approaches as well as for the reference network (list classifier). In practice, however,
the ZI1-network is superior to the TLU-network; it is more robust and even single invariant features
are unequivocally defined. The investigations reported here do not concern any aspects of learning.

Introduction

Most network approaches to geometrically invariant recognition of pictorial patterns are based on in-
variant classification, i.e., explicit representations of invariant features do not occur. The most pow-
erful approach of this kind that can be adapted to meet arbitrary demands for invariance and pattern
reconstruction, is the so-called list classifier. This straightforward method uses many holistic tem-
plate-matching (sub)classifiers for each invariant class in parallel — one for every transformed ver-
sion of the class prototype. A class-specific decision z; j is obtained by the summation of the cor-
responding subclassifier outputs. Each of the holistic subClassifiers is a threshold logic unit (TLU)
that computes the inner product of the normalized signal vector x and the normalized weighting vec-
tor W, and finally thresholds the resulting cross correlation coefficient y iv according to
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Obviously, invariant list classification allows for unequivocal pattern characterization and thus re-
construction which, of course, does not include the description parameters under which the classifi-
cation is invariant. The advantages of this approach are opposed by the total lack of generalization
which can only be attained at unreasonably high costs.

v

In this paper, however, two network approaches to geometrically invariant pattern recognition are
presented and compared which essentially deal with the generation of representations of invariant
features that may subsequently be linearly classified. This decision making second stage consists of
TLUs — one for every class j —, whose thresholds can be replaced by a single maximum detector if
generalization is demanded. Unlike most of the existing investigations that deal with 'learning’ and
recognition rates, the main goal of this contribution is to determine the necessary and sufficient con-
ditions (structure and costs) under which the following demands for a classifier can be met:

1. invariance under certain types of unrestricted geometric transformations

2. unequivocal class definitions and thus perfect reconstructability also of nonbinary patterns

3. no a priori knowledge about the kind and number of the pattern classes
Owing to these demands, more economic but less universal standard approaches, such as linear
reduction of signal dimensions, as well as subclass techniques, must be discarded.

The investigations reported here are exemplified for unrestricted 2D pattern translations on a toroidal
image array of n pixels. Consequently, the maximum number of translation invariant classes that
exist for signals of m levels, is k. 2m"/n. — Comparable considerations hold for unrestricted rota-
tions and scale changes which can be imagined as converted into 2D translations by log-polar map-
ping (Brousil and Smith, 1967; Casasent and Psaltis, 1976).
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Direct Invariant Classification

A list classifier that is invariant under unrestricted translations of signals on a toroidal image array of
n pixels typically requires n TLUs per class — one for every shift position. Because the TLUs com-
prise holistic templates, i.e., nD vectors w., the costs of ideal invariant class definitions, expressed
by the number of weighting coefficients per class, are N=n? (see Fig.1a, roman inscriptions).

Direct invariant classification by a linear classifier, i.e., by cross correlations and subsequent maxi-
mum detection, is generally impossible. Thus, nonlinearities, at least of the polynomial degree p=2,
must be applied to the signal components before linear classification becomes possible. Owing to
the involved thresholds 6, list classification relies on nonlinearities of degree p—oo. Hence p=2 is a
necessary and p—oo a sufficient condition for ideal and invariant class definitions in such networks.

Figure 1a, b. Network structures for list classification (roman inscriptions) and for polynomial pattern
decomposition (PPD) (italic inscriptions) (a), as well as for multilinear pattern decomposition (MPD) (b)

Polynomial Pattern Decomposition

Instead by holistic comparisons, one can try to describe patterns in terms of their composition from
pattern elements. For this purpose the weighting vectors consist of only g<<n nonzero components
and shall be called mask vectors %h,. As with list classification, each type of mask (denoted by ¥,
with 1<y <x) must be applied at every position if shift invariance is demanded, and the desired in-
variant features must be determined from the outputs of each of the thereby defined « sets that con-
sist of typically n TLUs. Commonly the number of suprathreshold signals, i.e., their sum s, is
used for this purpose which leads to a network structur that is known from the list classifier %see
Fig.1a, italic inscriptions).

Unfortunately separate normalization of signal and mask vectors according to Eq.(1) cannot be ap-
plied for the unequivocal detection of pattern elements. Because normalization is only feasible at the
enormous costs of kn individual operations which are difficult to realize within network structures,
normalization is sacrificed. Consequently, the threshold of the TLUs must be replaced by a nonlin-
ear and strictly monotonic transfer characteristic of non-negative derivative which leads to so-called
generalized TLUs. If the nonlinearity is expressed by a polynomial of degree p, then every invariant
feature is a sum of typically n polynomials that are computed from a linear discriminant function y, .
(cf. Eq. (1)). Therefore, this kind of extraction of invariant features shall be called a polynomial ap-
proach to pattern decomposition (PPD).
n I i

oSy = g Ui = Zi 2 Ot (¥, )P (2)
In conjunction with a final linear classifier stage the PPD network represents a perceptron network
with one hidden layer (Lippman, 1987; Rosenblatt, 1962).

Obviously, non-binary masks do not make much sense without normalization. Therefore, and in or-
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der to prevent the combinatorial explosion of mask types, all further investigations are confined to
0/1-valued masks — which turns out to be an appropriate strategy. Irrespective of this restriction, the
fundamental question, how many masks of what type are necessary and sufficient for perfect trans-
lation invariant pattern descriptions, is not yet answered. Empirical investigations reveal that they
are not achieved if masks with q<3 are applied, or if the nonlinearity is of polynomial degree p<3.
Therefore, a necessary condition and, with the fact that a subsequent template-matching classifier
accesses kD features, the costs for translation invariant classification with ideal class definitions are

(p=3)A(q=3)= (N=3k=n%6) for n>>3 . 3)

Although more specific than the statements that were given at the end of the previous section, it
does not yet clarify whether p=3 and q=3 are sufficient for unequivocal pattern reconstructions.

Multilinear Pattern Decomposition

From the previous conditions it must be concluded that only a single term of every polynom1a1 3
(cf. Eq.(2)) is actually responsible for perfect pattern descnptlons namely the trilinear term dx ?h(ﬁ
comprises those g=3 signal values which are selected by mask 3h,.. Hence, the hereby definéd in-
variant features 3r, are sums of n well-chosen trilinear terms, i.e., spemal trilinear forms. The cor-
responding q -linear form is defined by

o, = 2 ad,; ; 019_11 hyisXyic - (4)
with the selected signal values x_. - that may be weighted by the corresponding mask components
h, .. For 0/1-masks the features dre autocorrelation coefficients of order g of a signal x. Obviously,
pattem elements can be defined through the multiplication schemes that are given by (/1-masks, al-
though the element detection relies on mechanisms that fundamentally differ from mask matching.
Owing to the multilinear forms, this kind of extraction of invariant features shall be called a multilin-
ear approach to pattern decomposition (MPD). Figure 1b shows a network for the computation of a
single feature. The generalized TL.Us of Fig.1a are replaced by so-called product units (Durbin and
Rumelhart, 1989; Giles and Maxwell, 1987; Gliinder, 1986). According to Eq.(4), this network
belongs to the category of the XIT-networks (Rumelhart et al., 1986).

Merely the minimal order q that guarantees perfect invariant pattern descriptions remains to be de-
termined. Fortunately it has been proven by several authors — firstly, by McLaughlin and Raviv
(1968), for binary pattern signals by Minsky and Papert (1969), and for complex-valued signals by
Lohmann and Wirnitzer (1984) —, that any pattern of finite extent is perfectly described by its com-
plete triple- autocorrelatlon functlon except for its translatory position (translation invariance). Actu-
ally, all poss1ble k and 2« trilinear and bilinear autocorrelation coefficients, in conjunction with a
subsequent template-matching stage, permit ideal translation invariant classifications. Therefore, the
necessary and sufficient condition and the costs for ideal MPD classification are

(@=2)A(q=3) = (N =2k + 3k = n%6) for n>>3. (%)

This result expresses the primary role polynomial order q plays in ideal invariant classification and it
demonstrates that the polynomial degree p is relevant only insofar, as multilinear terms are to be
generated through polynomials, e.g. by generalized TLUs. Features that are invariant under other
geometric transformations can be evaluated via generalized autocorrelation (Gliinder, 1987).

Conclusions

Somewhat surprisingly, the costs for list, PPD, and MPD classification turn out to be almost the
same, namely N=n2 weighting coefficients per class that must be adjusted or 'learned’ in order to
obtain unrestricted translation invariant and unequivocal class definitions. While list classifiers suf-
fer from the mentioned shortcoming, the PPD and MPD approaches appear functionally equivalent,
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at least theoretically. In practice, however, PPD networks must cope with a high signal dynamic
that is caused by the large number of polynomial terms that constitute each feature. On the other
hand, the processing must be highly accurate in order to represent the crucial trilinear terms which
otherwise are lost in the polynomials. In this regard, MPD networks are more economic and robust.

All three approaches permit a proportional decrease in the number of templates, masks, or multipli-
cation schemes if the variance is restricted. This property is a consequence of the fact that invariance
is exclusively due to the averaging of nonlinearly weighted correlation coefficients, or multilinear
terms which are extracted at different positions, according to the extent of the geometric variance, as
it was already pointed out by Pitts and McCulloch (1947).

Because every single PPD or MPD feature is invariant, a reduction of the number of features does
not affect the invariance but the precision of the pattern descriptions. In this sense, good pattern de-
scriptions even require certain types of variance, namely all those geometric transformations that re-
late the pixels of a pattern. That is why 2D translations, as well as expansions in conjunction with
rotations, are well suited for ideal pattern characterizations. — For example, a reduction of the num-
ber of mask types by a factor n, to all Zk=n/2 possible features, implies that patterns with identical
second order autocorrelation functions become indistinguishable.

Unfortunately, the decrease in descriptive power that is caused by fewer features happens more rap-
idly for PPD than for the MPD features, at least if non-negative signals are considered. This is due
to the principal fact that PPD features cannot unambiguously signal the presence or absence of form
elements in patterns which in turn is a consequence of the normalization problem. Owing to the co-
incidence-detection character of multiplication, MPD features are ideally suited for such decisions,
especially if they are computed from sparsely coded signal representations, i.e., those that contain
only a few nonzero values. The MPD approach even permits unequivocal reconstructions of binary
pattern versions from binarized multilinear terms. Consequently, the replacement of the multiplica-
tion nodes by real coincidence detectors drastically improves the noise immunity of the feature ex-
traction process. PPD systems lack this valuable property because pattern information is essentially
coded in the amplitudes of polynomials.
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