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1. INTRODUCTION

There is once again considerable interest in a detector prin-
ciple for the visual analysis of motion,1–5 which was original-
ly proposed by Hassenstein and Reichardt in the 1950’s.6–9 
This so-called bilocal correlation approach was originally 
formulated in order to explain the optomotor behavior of 
invertebrates and the corresponding neural structures in 
their compound eyes.10–15  Meanwhile, however, there is evi-
dence that this correlation principle also applies to motion 
analysis in vertebrates, including humans.1,16–18

The function of bilocal velocity detectors is based on the 
measurement of the time � that is needed by a moving object 
point to traverse a spatial interval of known length �.  The 
estimated velocity of the point is then given by the quotient

 v � � � . (1)

The measurement of time can be circumvented by compar-
ing the object velocity with a set of velocity prototypes that 
are implemented by elementary detectors, each tuned to a 
different velocity.  Figure 1a shows a possible schematic of 
such a detector unit.  More elaborated versions and neuro-
biologically inspired models of this correlation detector are 
discussed by van Santen and Sperling2 as well as Ruff et 

al.19  The detector unit considered here senses the image 
intensity at two positions separated by a distance �.  In the 
simplest case, one of the intensity signals thus determined 
is delayed by an amount � at stage TF and is compared with 
the other signal at stage NL.  Coincidence of the two signals 
is obtained if an object point crosses the sensors in the cor-
rect succession and at a speed according to Eq. (1).  How-
ever, when confronted with more-complex stimuli, a single 
detector unit of this type in general gives rise to object-
speci�c deviations from this ideal result.  In this paper it is 
proposed to overcome this object dependence of the velocity

measurements by using arrays of such elementary detectors 
and by suitably combining their coincidence signals.  Veloc-
ity tuning of the bilocal unit is obtained by the proper choice 
of the spatiotemporal intervals.  For the human visual sys-
tem van de Grind et al. recently found a constant time delay 
for a wide range of velocities (at least for 2° sec foveal� �v  
30° sec).17  This implies that tuning takes place by alter-
ations of the sensor spacing �.  The following investigations 
deal with arrays of such �-tuned elementary detectors situ-
ated in the image plane of an optical system (retina) or in 
a preprocessed but still retinotopically organized image 
representation.

In this paper I address issues that are exempli�ed by the 
following questions on motion analysis in two-dimensional 
arrays of bilocal detectors2–4,20–22:

• How should the coincidence or output signals of the 
detector units be combined?

• How does object form affect the measurement of ve-
locity in an analyzer system?

• How does an analyzer system respond to velocity tran-
sients?

In what follows it is demonstrated that the instantaneous 
velocity of an object can be estimated independently of its 
form and without any additional measurements of form pa-
rameters, such as curvature.  This is achieved by suitably 
integrating and evaluating the coincidence signals of bilocal 
units that are properly arranged in the detector plane.  The 
distribution of the units is speci�c for each type of motion, 
e.g., frontoparallel translation or rotation, expansion, and 
rotation in depth.  In a �rst step the output signals of ele-
mentary detectors with identical geometric parameters are 
pooled.  This yields the so-called modi�ed autocorrelation 
function.  In a second step the maximum of this function, or

Correlative velocity estimation:  visual motion analysis, 
independent of object form, in arrays of velocity-tuned 

bilocal detectors

Helmut Glünder

Institut für Medizinische Psychologie, Ludwig-Maximilians-Universität München, Gœthestraße 31, 

D-8000 München 2, Federal Republic of Germany

Received May 3, 1989; accepted September 19, 1989

The visual estimation of object velocity in systems of tuned bilocal detector units (simpli�ed Hassenstein–
Reichardt detectors) is investigated.  The units contain delay �lters of an arbitrary low-pass characteristic.  Arrays 
of such detector units with identical delay �lters are assumed to cover the plane of analysis.  The global evaluation 
of the output signals of suitably arranged detector units is exempli�ed by the analysis of frontoparallel translations 
of rigid objects.  The correlative method permits the estimation of the instantaneous object velocity, independently 
of object form.  The time course of the resulting estimate is shown to be the convolution of the true velocity pro�le 
with a time-invariant kernel that depends solely on the impulse response of the delay �lters and thus characterizes 
the analyzer system.  The mathematical analysis of the processing principle is illustrated by considering idealized 
detector systems.  The response of correlative motion analyzers to compound motion and to motion of nonrigid 
objects is discussed.



256  J. Opt. Soc. Am. A/Vol. 7, No. 2/February 1990 Helmut Glünder

Fig. 1. a, Schematic of a velocity-tuned bilocal detector unit.  TF 
indicates a linear, time-invariant �lter of impulse response h t( ), 
and NL indicates a nonlinear operation (e.g., multiplication) of 
two time-varying intensity signals.  b, Location of a unit’s point 
sensors in the detector plane.

alternatively its centre of gravity (centroid), is determined. 
The position vector thus computed is proportional to the 
desired instantaneous velocity estimate.  For the centroid-
based approach, the estimated velocity as a function of time 
is proved to be the convolution product of the true velocity 
pro�le with a time-invariant kernel that is characteristic of 
the analyzer system.  The kernel function depends on the 
integral function of the impulse response of the (delay) �l-
ter, which is part of each detector unit.  It is shown that 
any linear temporal �lter with an impulse response of non-
vanishing mean may serve for this purpose.

The approach to form-independent velocity estimation is 
explicated for arbitrary frontoparallel translations, although 
it applies equally well to other types of rigid object motion in 
space.  This choice was made in order to permit compari-
sons with other investigations that concern mostly this type 
of motion.  For reasons of simplicity the mathematical 
treatment is con�ned to the global analysis of a single and 
rigid object translating in front of an unstructured back-
ground.  In order to meet real-world requirements, local or 
regional analyses must be assumed to be operative in bio-
logical systems.5,23,24  Unlike other approaches, the method 
proposed here is not restricted to the analysis of (temporal-
ly discrete) image sequences.

2. ANALYZER FOR FRONTOPARALLEL 
TRANSLATORY MOTION

A system is considered that estimates the velocity v( )t � 
[ ]( ), ( )v t v tx y

T of a rigid object function b x y b( , ) : ( )� �r const. 
that is arbitrarily translating in an otherwise unstructured 
image plane.  The front end of this analyzer system is as-
sumed to be a spatially continuous arrangement of bilocal 
motion detector units in this plane.  One of these units is 
sketched in Fig. 1a.  It represents one velocity-tuned branch 
of the classical Hassenstein–Reichardt detector.  This de-
tector is characterized by the vector �, which speci�es the 
relative position of its sensor points in the image plane, i.e., 
their spatial separation and orientation (cf. Fig. 1b), as well 
as the preferred direction for a moving point.  It is further 
typi�ed by the impulse response h t( ) of a causal temporal 
�lter situated in one branch of the detector circuit. The out-
put signal e t( , , )r �  of such a bilocal detector results from 
the nonlinear combination of the �ltered input signal b th( )

at location r with the direct input signal b t( ) at point r� � 
of the image plane.  For the following mathematical analy-
ses, the multiplication is chosen as the nonlinear operation, 
and all motion-detector units of the analyzer system are 
assumed to have identical �lters.  Furthermore, the detec-
tor units are assumed to be isotropically arranged at every 
image point, i.e., their vectors � cover the whole range of 
angles (0 360° °� �� ) and the whole range of radial spans 
(0� �� �max).16  The upper limit �max depends on the size 
of the region of interest and on the maximum speed to be 
analyzed (see Section 7).

For the global analysis of a translating object function b( )r  
it is suggested that the output signals e t( , , )r �  of all detector 
units with identical vectors � be separately integrated.  This 
pooling scheme is mathematically described as correlation 
of the moving object function b t( , )r  with its temporally �l-
tered version b th( , )r .  Hence the resulting function is called 
a modi�ed autocorrelation function (MACF) of order 2:

k t e t b t b t

b

h( , ) ( , , ) ( , ) ( , )

: (

� �� � �

�

�� ��r r r r r� d d

rr r, ) ( , )t b th���

for real-valued b t( , )r  and b th( , )r . (2a)

Unless otherwise stated, all integrations in this paper ex-
tend over the support of the integrands.  The symbol �� as 
speci�ed by the (shift) variable � � ( , )� � T indicates the two-
dimensional spatial correlation.

3. PRINCIPLE OF VELOCITY ESTIMATION

The question arises:  How can estimates of the true object 
velocity v( )t  be gained from the MACF k t( , )� ?  In consider-
ing the circuit of Fig. 1a it becomes immediately clear that 
it is impossible to compute velocity estimates vh t( ) if detec-
tor units without �lters are applied, i.e., for �lters with the 
impulse response

 h t t tz z( ) ( ) ( )� �� � v 0. (3)

One might predict that the true velocity can be computed if 
�lters are used that introduce an in�nitesimal signal delay:

 h t t t t� � � �
�

� �( ) lim ( ) ( ) ( )� 	 � �

0

v v . (4)

For an ideal signal delay of �nite delay time �0  the true 
velocity can be approximated by the quotient of spatial and 
temporal intervals [cf. Eq. (1)]:

 h t t t t0 0 0 0 0( ) ( ) ( ) ( )� 	 � �� � �v � . (5)

Vector �0( )t  indicates the true translation of the object from 
the position at a time interval �0  in the past to its present 
location.  This vector can always be found from the coordi-
nates of the absolute maximum of the MACF k t0( , )� :

 k t k t0 0 0( , ) : max ( , )[ ]� �
�

� , (6)

provided that the object function is nonperiodic.  Thus the 
estimated velocity v0( )t  is independent of the object func-
tion.  Motion analysis performed on (temporally discrete) 
image sequences, e.g., in computer vision, is a special case, 
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because time t is discrete and especially because the tempo-
ral increment in general serves as delay time �0 .  Unlike 
technical systems, biological systems must deal with contin-
uous time t and band-limited �lters, implying extended im-
pulse responses.  In Section 5 it is demonstrated how veloci-
ty estimates can be obtained from MACF’s that are comput-
ed by such systems.

4. DESCRIPTION OF TRANSLATORY IMAGE 
MOTION IN THE SPACE–TIME DOMAIN

A point situated at the origin of a translating pictorial object 
leaves a trace that can be mathematically described as a 
�-line function in space-time.  The three-dimensional exten-
sion of Papoulis’ formulation25 leads to a de�nition of �-line 
functions as lines of intersection (product) between two 
� surfaces.  Mainly because of causality, the �-line functions 
considered here are unique with respect to the temporal 
coordinate.  Therefore only one spatial object position is 
possible at any moment.  Consequently, the two � surfaces 
are de�ned by argument functions a t( , )r  of one spatial 
coordinate:

 a x t x X tx( , ) ( )� 	   (7a)

and

 a y t y Y ty( , ) ( )� 	 . (7b)

The product of the corresponding � surfaces describes the 
point trace in the x y t space:

� � � � �[ ] [ ] [ ] [ ] [( ) : ( , ) ( , ) ( )r R	 � � 	t a x t a y t x X tx y yy Y t	 ( )],

with R( ) ( ), ( )[ ]t X t Y t� T. (8)

Vector R( )t  is the trajectory of the moving object in the x y 

plane as a function of time.  Its temporal derivative is its 
true velocity v( )t .  Object motion, i.e., the spatiotemporal 
pattern b t( , )r , can now be expressed as the convolution of 
the object function b( )r  with this �-line function (cf. Appen-
dix A):

 b t b t t b t( , ) ( ) ( ) ( ) ( )[ ] [ ]r r r R r R� 	 � 	�	� �  . (9)

Unless otherwise speci�ed, the symbol �	 denotes the three-
dimensional spatiotemporal convolution.

With the help of Eq. (9) the temporally �ltered version 
b th( , )r  of the spatiotemporal pattern b t( , )r  can now be for-
mulated more explicitly [cf. Eq. (2a)]:

b t b t h t b t th( , ) ( , ) ( ) ( ) ( ) ( ) ( )[r r r r r R� � 	�	 �	� � � ]] ( ) ( )�	h t � r ,

with � � �( ) : ( ) ( )r � x y . (10)

The �-line function �[ ]( )r R	 t  determines not only the spa-
tiotemporal position of the �lter impulse response h t( ) but, 
depending on the reciprocal of the true speed, also its mag-
nitude [for details see Appendix A; the case v t( )� 0 is dis-
cussed in Section 7].

By using Eqs. (9) and (10), the MACF of Eq. (2a) can now 
be formulated in a more detailed way:

 
k t b t t

b t

( , ) ( ) ( ) ( )

( ) ( )

{ }

{

[ ]�
�

� 	�	

�	

r r R

r

� �

� ��� [[ ]( ) ( ) ( )}r R r	 �	t h t �  (2b)

and rearranged as follows:

 
k t b b t

t

( , ) ( ) ( ) ( )

( )

{ }

{

[ ]

[ ](

� �

�

�

	�	

r r

r R

��

��

�

� �[[ ]( ) ( ) ( )})r R r	 �	t h t � . (2c)

Introducing the static autocorrelation function (ACF) ka( )�  
of the object function b( )r  permits a compact formulation of 
the MACF:

 k t k u ta( , ) : ( ) ( , )� � ��� �	 . (2d)

The symbol �	 as speci�ed by the (shift) variable � � ( , )� � T 
denotes the two-dimensional spatial convolution.

Equations (2c) and (2d) reveal an important property of 
the MACF:  It can be expressed as the convolution of the 
motion-independent ACF ka( )�  with an object-independent 
function u t( , )� .  Whereas the former typi�es the object, the 
latter is the system-speci�c motion function (SMF), which 
depends solely on the motion history and on the impulse 
response of the �lter.  The SMF contains all the informa-
tion about motion that can be supplied by an analyzer sys-
tem of the type discussed.  This information is at least 
theoretically available for the estimation of the instanta-
neous object velocity, but it is accessible only through the 
MACF.  Finally, it follows from Eqs. (10) and (A5) below 
that the spatial mean of the SMF equals the temporal mean 
of the �lter impulse response for every moment:
 

Fig. 2. a, One-dimensional motion along the x coordinate de-
scribed by the trajectory [ ]( )x X t	  in the space-time domain.  A 
correlative analyzer system composed of detector units with identi-
cal �lters of delay time �0  is considered for velocity estimation.  b, 
The SMF of the motion trajectory shown in a.  The evaluation of 
the instantaneous velocity v0 0 0� � �  at time t0 is indicated.  c, The 
impulse response of the ideal delay �lter.
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Fig. 3. Example of a SMF in the � � plane at time t1.  For analyzer 
systems with ideal delay �lters (see Fig. 2), the SMF is a � point at 
position �0.  For systems comprising low-pass �lters, the SMF is 
a modulated � line u( )�  with its center of gravity assumed at loca-
tion �c.

 U u t h t t H: ( , ) ( ) :� � ��� �� �d d , (11)

i.e., it is independent of time and thus is a constant that 
typi�es the analyzer system.

The meaning of Eqs. (2c) and (2d) is now exempli�ed by 
an analyzer system with ideal delay �lters of the impulse 
response h t t0 0( ) ( )� 	� �  [cf. formula (5)].  The SMF for 
such a system becomes

 u t t t t0 0 0 0( , ) ( ) : ( ) ( )[ ] [ ] [ ]� � �� 	 � 	 	� � � � � � �  , (12)

where

 �0 0 0 0( ) ( ) ( ) ( ), ( )[ ]t t t t t� 	 	 �R R � � � T (13)

and which is illustrated by the one-dimensional example 
in Fig. 2.  When these results are applied to Eq. (2d), the 
MACF turns out to consist of adequately shifted ACF’s:

 k t k t k ta a0 0 0( , ) ( ) ( ) ( )[ ] [ ]� � � � � ��� 	 	�	 ��  . (14)

Hence the SMF u t0( , )�  is a single �-point function with the 
coordinates �0( )t  in the � � plane (see Fig. 3).  For nonperi-
odic object functions, the absolute maximum of the static 
ACF is always at its origin.  Therefore, and owing to 
Eq. (14), the absolute maxima of the MACF in the � � plane 
appear at the coordinates �0( )t .  In other words, the shift 
vectors �0( )t  are determined exclusively by the SMF, and 
thus velocity estimation does not depend on the object func-
tion, a property that was pointed out in Section 3.

The insights gained in this section, especially the formula-
tions of Eqs. (2c) and (2d), permit the derivation of a method 
for the velocity estimation in analyzer systems comprising 
realizable �lters.

5. VELOCITY ESTIMATION IN SYSTEMS 
COMPRISING REALIZABLE TEMPORAL 
FILTERS

At every instant, SMF’s of analyzer systems with band-lim-
ited �lters are modulated �-line functions in the � � plane. 
They always start from the origin of the coordinate system 

and pass through point �0 (see Fig. 3).  The curves depend 
on the combination of impulse response and true velocity. 
A single maximum of the SMF and the MACF in the � � plane 
is now no longer guaranteed.  Even if a mathematically 
unique maximum occurs at each moment, one confronts 
severe practical problems in attempting to determine its 
exact position in the MACF.26  Therefore it is proposed to 
determine coordinates of comparable relevance through in-
tegral operations, namely, the centers of gravity (centroids) 
�c t( ) of the MACF (they should not be confused with the 
centroid of the object).  As is known, the ACF of any real-
valued object function is point symmetric and thus balanced 
with respect to the origin, i.e., its centroid is at the origin:

k ka a( ) ( )� � � �� �d d�� ��� � 0  for real-valued b( )r .

(15)

Consequently, the centroid locations of the SMF are identi-
cal with those of the MACF, i.e., the centroid vectors �c t( )� 
[ ]( ), ( )� �c ct t T are completely independent of the object form. 
Their vector components are de�ned by the integrals

 � � �c K U
t k t u t( ) ( , ) ( , )� ��� ��1 1� � � �d d  , (16a)

 � � �c K U
t k t u t( ) ( , ) ( , )� ��� ��1 1� � � �d d  , (16b)

with the constant factor

K k t U k U b UBa� � � ��� �� ��( , ) ( ) ( ) :� � � �d d d� �r r
2 2.

(17)

The centroid of the �lter impulse response,

 �c H
h t t t� �1 ( ) d , (18)

or any other characteristic time constant, and relation (11) 
permit the de�nition of a centroid-based velocity estimate

 vc c ct t( ) ( )� � � . (19)

It is a trivial fact that the position of a �-point function 
coincides with its centroid location, and thus analyzer sys-
tems comprising ideal delay �lters of impulse response h t0( ) 
� 	� �( )t 0  represent special cases of the proposed approach. 
According to the relations (11) and (18) one obtains

 � � �0 0� 	� ( )t t td  , (20)

and �nally, with the relations (11), (12), (2d), and (16), the 
components of the shift vector �0( )t  are given by

 � � � � � �0 0( ) ( )[ ]t t� 	� d  , (21a)

 � � � � � �0 0( ) ( )[ ]t t� 	� d  . (21b)

6. ACCURACY OF THE VELOCITY  
ESTIMATES

It may be useful to know about the accuracy of the velocity 
estimates that are delivered by a centroid-based analyzer 

�

�
�0
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�c �0
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��c

( ,�u t )
�
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�u t0 1

0
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system.  Owing to the independence of the estimation pro-
cess from object form, it is suf�cient to investigate the evalu-
ation of centroids from the SMF and not from the MACF.

In this section it is explained how well a temporally band-
limited analyzer system approximates the temporal deriva-
tive of the trajectory

d d T
R v( ) ( ) ( ), ( ) ( ) , ([ ] [ ( )t t t v t v t X t Yx y t� � � �	 � tt t) ( )]�	 � T,

(22)

with

  �� �( ) ( )t t td d  . (23)

For this purpose it is feasible and convenient to consider the 
components of the trajectory R( )t  separately.  The follow-
ing deductions are carried out for its x component X t( ), but 
they apply to the y component by analogy.  The application 
of Eq. (16a) to the projection of the SMF onto the � axis,

 u t u t� � �( , ) ( , )� � � d  , (24)

and taking into account relation (11), results in

 H t u tc� � � ��( ) ( , )� � d  . (25)

As an example, the nonlinear transformation of a rectangu-
lar impulse response hr( )�  with respect to the one-dimen-
sional trajectory X t( ) is depicted in Fig. 4 for time t t� 2. 
The time-varying nonlinear transformation is mathemati-
cally formulated by

 u t h v t� � � � �[ ]( ), ( ) ( )� 	  . (26)

Inserting this expression and the shift variable (cf. Fig. 2a)

 � � �( , ) ( ) ( )t X t X t� 	 	  (27)

into Eq. (25), as well as integrating with respect to the new 
variable �, yields

Fig. 5. Impulse responses h t( ) of three idealized �lters (top), the 
corresponding kernel functions g t( ) (middle), and their derivatives 
g t( ) (bottom).  The estimated time course of the object velocity is 

the convolution of the true velocity pro�le with function g t( ).  a, 
Ideal delay �lter.  b, Filter with an in�nitesimal delay.  c, Low-pass 
�lter of rectangular impulse response.

 
H t h X t X t

X t H h X t
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� �

( ) ( ) ( ) ( )

( ) ( ) (

[ ]� 	 	

� 	 	

� d

)) d��  . (28)

Hence the � coordinate of the centroid location results from 
the convolution

 � �c t X t t h t H( ) ( ) ( ) ( )� 	�	 � � . (29)

All convolutions in this section are purely temporal.
According to Eq. (19) the x component of the estimated 

velocity vc cx cyt v t v t( ) ( ), ( )[ ]� T can be written as

 v t X t t h t H X tcx c
g t( ) ( ) ( ) ( ) : ( ) ( )� 	 ��	 �	 1

� �� �  , (30)

or, with  � �	g t g tt( ) ( )( )�  and the relations (22) and (23),

 v t X t t v tcx xg t g t( ) ( ) ( ) ( )( ) ( )�  ��	 �	 �	�  . (31)

By Eq. (31), the estimated velocity components v tcx y, ( ) are 
proved to result from the convolution of the true velocity 
components v tx y, ( ) with the time-invariant kernel

 g t g t t h t t
t

t H

t

c
( ) ( ) ( )�  � 	� ��

d d
0

1
0

1

0

1� � � , (32)

which in turn depends on the integral function of the im-
pulse response and thus is characteristic of the analyzer 
system.  In short,

 vc x yt v t v tg t g t( ) ( ) , ( )[ ]( ) ( )� �	 �	 T. (33)

The kernel functions g t( ) and their derivatives g t( ) of 

Fig. 4. Nonlinear transformation of the rectangular impulse re-
sponse hr( )�  with respect to the one-dimensional trajectory (see 
Fig. 2a) for time t2.
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three idealized analyzer systems are sketched in Fig. 5.  A 
system with ideal delay �lters leads to the rectangular kernel
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and its corresponding derivative

   � 	 	g t t t0
1

00
( ) ( ) ( )[ ]� � � �  , (35)

which are both shown in Fig. 5a.  Figure 5b presents the 
kernel function for a system with in�nitesimal delay,
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and its derivative,

  � g t t� �( ) ( ). (37)

Thereby the measurement of the true velocity is con�rmed 
[cf. formula (4)].  As a �nal example, a system with �lters of 
rectangular impulse response h t g tr( ) ( )� 0  with � �c� 0 2 is 
considered.  Such a system has the kernel functions depict-
ed in Fig. 5c.

7. LIMITS AND MODIFICATIONS OF THE 
ANALYZER PRINCIPLE

This section deals with theoretical and practical limits of the 
analyzer principle and with some modi�cations necessary to 
allow for the analysis of more-realistic stimuli and for the 
explanation of visual phenomena, such as �icker fusion and 
apparent motion.

Owing to the normalization in Eqs. (16) and (18), centroid 
locations cannot be computed if the impulse response of the 
�lter is of zero mean, H � 0 [cf. relations (11) and (17)]. 
Therefore the method fails for all kinds of high-pass or 
band-pass �lters that have transfer functions with a zero at 
the origin.  With respect to neural systems, the demand for 
H � 0 is not restrictive, since the direct representation of 
bipolar signals as impulse rates is impossible anyway.  Be-
sides, low-pass versions of delay �lters seem more suited for 
this purpose and are biologically plausible.

The centroid-based approach permits, at least theoreti-
cally, the estimation of object velocity, independent of the 
object form.  This holds even for motion of periodic object 
functions, as it may appear as background shifts caused by 
eye movements.  In practice, however, broadband object 
spectra are advantageous.  The signal energy of the ACF is 
then concentrated near its origin. Consequently, a greater 
resemblance between the SMF and the MACF is achieved, 
and the centroid extraction is facilitated, especially in sys-
tems of restricted computational accuracy.  It is helpful as 
well to reduce the mean value of the input signals, as this is 
performed by the preprocessing stages of most biological 
systems.  On the other hand, ideally differentiated object 
functions, i.e., those of zero mean, B � 0, again prohibit the 
evaluation of centroids [cf. relation (17)]. In neural systems, 

however, signal representations of zero mean are quite im-
probable.

The correlation analysis discussed so far can also be per-
formed by local correlations, provided that it is restricted to 
speeds of less than a maximum value vmax.  For this purpose 
a minimum condition must be met:  If for instance, the local 
area of analysis is assumed to be of the smallest possible 
extent 2�, then the centers of neighboring areas must not be 
separated by more than the distance �.23,24  For an analyzer 
system characterized by �c , the maximum value �max is de-
�ned by

 � �max max� v c . (38)

There is indeed evidence for a limited range of distances � in 
the human visual system, for instance, Braddick’s �ndings, 
which led to the distinction of short-range and long-range 
processes in motion perception.27  For the motion analysis 
of more than a single object and of objects moving in front of 
structured backgrounds such locally computed MACF’s are 
essential.  They can simply be integrated in order to pro-
duce regional or global MACF’s.  In biological vision sys-
tems, this pooling is suspected to be object-speci�c.

The minimum detectable speed vmin in �-tuned analyzer 
systems with spatially discrete front ends is proportional to 
the resolution �r of the object representation:

 v r cmin � � � . (39)

Van de Grind et al. actually found an eccentricity-depen-
dent critical speed, which marks the lower speed limit vcrit 
for �-tuned detector mechanisms.17  These investigations 
further reveal that, for lower speeds, the corresponding de-
tector units are tuned by changing the time constant of the 
�lter.  It is therefore conjectured that v vcrit� min.

If an object stops moving, a �-point function builds up at 
the origin of the � � plane as part of the SMF.  Sudden jumps 
of the object function, with static intervals, lead to SMF’s 
that consist of a series of � points with different impulse 
integrals.  In the v t( ) diagram these ideal spatial jumps show 
up as � functions, which, after their convolution with the 
kernel function g t( ), result in the time course of the velocity 
estimate.  Under certain conditions human observers inter-
pret such stimuli as continuously moving (apparent motion), 
although it is doubtful whether this phenomenon is ex-
plained merely by the smoothing effect of the kernel func-
tion.  Objects remaining static for longer periods than the 
maximum duration tmax of the impulse response h t( ) lead to 
the static SMF,

 u t u ts s( , ) ( ) ( )� �� � ,  u Hs( ) ( )� �� �   (40)

[see relation (11)], and, by using Eq. (2d), they are described 
by the static MACF,

 k t k ts s( , ) ( ) ( )� �� � ,  k Hks a( ) ( )� �� . (41)

In this case the analyzer system signals the correct centroid 
location �c� 0 and permits form analyses of the object based 
on its ACF, e.g., for the extraction of invariant features. 
When applied to other types of motion, such as expansions 
or contractions and rotations, correlative motion analysis 
results in the generalized MACF [cf. Eq. (44) below] and, for 
nonmoving objects, in the generalized ACF.28-30  From the 
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latter function, shape descriptors can easily be extracted, 
which are invariant under the whole group of similarity 
transformations and express object properties such as sym-
metries, similarities and congruences, i.e., categories known 
from Gestalt psychology.23,29,31

Intensity �uctuations of a moving object caused, e.g., by 
stroboscopic illumination can be described by a suitable 
function f t( ) that temporally modulates the �-line function 
de	ned in Eq. (8).  [Relation (11) does not hold for f t( )�1.] 
For pure �icker, without any motion, the �icker SMF be-
comes

 u t u tf f( , ) ( ) ( )� �� � ,  u t f t f t h tf( ) ( ) ( ) ( )[ ]� �	  , (42)

and thus the �icker MACF can be written as

 k t u t kf f a( , ) ( ) ( )� ��  . (43)

As is known, the sensitivity of biological vision systems to 
�ickered stimuli decreases with increasing �icker frequency. 
Therefore, and because Eq. (42) does not imply a band-
 limited �icker SMF, temporal low-pass 	lters must be as-
sumed to exist in addition to the 	lter, preferably for both 
branches of each detector unit.  This issue was discussed in 
detail by Foster.32  Several detector models contain these 
	lters (see, for instance, Fig. 1c of Ref. 2), but temporal 
	ltering of the MACF, or combinations thereof, must also be 
considered.  These 	lters prevent a sudden breakdown of 
the motion percept during short periods while f t( )� 0, for 
instance, in the case of momentary object occlusions.

8. SUMMARY AND CONCLUSIONS

A method is introduced that allows one to estimate the 
instantaneous velocity of an object that translates in a fron-
toparallel plane.  For the mathematical analysis of the pro-
cessing principle a spatially continuous array of isotropically 
arranged bilocal detector units is considered.  These units 
comprise identical temporal 	lters and are tuned to differ-
ent velocities through the span of their point sensors.  At a 
	rst processing stage the output signals of the detector units 
are separately integrated according to their tuning veloci-
ties, leading to a signal representation that is described by 
the MACF.  The analysis of other types of motion requires 
differently organized arrays of detector units; in the case of 
expansions, radial con	gurations, and for frontoparallel ro-
tations, circular schemes are needed.23,24  A general mathe-
matical formulation is given by the generalized MACF of 
order 2:

k t b t b th( , ) ( ) , ( , )[ ]{ }z z r r r� �� � d

for real-valued b t( , )r  and b th( , )r . (44)

The operator �( )z  denotes geometric transformations, i.e., 
mappings r r
 , that are characterized by the parameter 
vector z.  For the analysis of frontoparallel translations with 
z� � one obtains �( ){ }� �r r� �  and thereby the expression 
of Eq. (2a).

A second processing stage serves for the computation of 
the velocity estimate from the MACF; the position vector 
�( )t  of either its maximum or its centroid is determined. 
Under certain conditions, namely, if periodic object func-

tions are processed and for particular combinations of the 
velocity pro	le and the impulse response of the 	lters, maxi-
mum detection may lead to ambiguous results.  The cen-
troid-based scheme avoids these problems.  In both cases 
the velocity estimate is the ratio of the position vector �( )t
and a time constant � that typi	es the detector units.  An 
important property of the estimation process is its indepen-
dence from the form of the moving object—with slight re-
strictions in case of the maximum detection scheme.

An essential concern of the investigation is that of the 
clari	cation of the general interrelationship between the 
true velocity and its estimate.  The latter turns out to be a 
low-pass version of the true velocity pro	le.  The low-pass 
characteristic is a well-de	ned function of the impulse re-
sponse of the 	lter and thus represents a time- and space-
invariant property of the analyzer system.

As mentioned above, the geometric structure of the ana-
lyzer systems is speci	c for each type of motion.  In conjunc-
tion with the correlative evaluation scheme, each analyzer 
system is selective for a certain kind of motion, i.e., it per-
forms motion matching.23,24  Thus certain kinds of com-
pound motion can be decomposed according to the imple-
mented analyzer systems (motion decomposition); each sys-
tem signals the appropriate portion of the motion process 
with respect to its speci	c type of motion.23  For instance, 
decomposition is not possible for frontoparallel rotations of 
arbitrary object functions that change in size.

This selectivity of correlative analyzer systems has conse-
quences for the analysis of nonrigid objects as well.  If, for 
example, a system for the analysis of frontoparallel transla-
tions is confronted with translations of a deforming object, it 
signals adequate deviations from the trajectory that would 
have been obtained from the corresponding rigid transla-
tions.  There is no other choice because any changes in the 
detector plane are interpreted strictly in terms of translatory 
motion.  Therefore it is feasible to extract aspects of arbi-
trary object motion in three-dimensional space by analysis 
of its planar projections.  For a mathematical description 
of nonrigid object motion the object function is itself consid-
ered time dependent, i.e., the object function b( )r  in Eq. (2) 
is replaced by b t( , )r .  Now the MACF is obtained by the 
space-variant convolution

 k t k t u tc( , ) , ( ), ( , )[ ]� � � ���  �	� , (45)

where the shift vector

  � 	 	� ( , ) ( ) ( )� �t t tR R  (46)

[cf. Eq. (27) and Fig. 2] indicates the temporal variance of 
the set of cross-correlation functions
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At every time, function k tc( , , )� �  comprises the spatial cross-
correlation functions of the present object function b t( , )r  
with all past views b tpv( , )r 	 �  of the object.

The correlative approach to motion analysis presented 
here is essentially based on the spatial integration of motion 
information.  Because of this property it is suited to ex-
plaining well-known phenomena of biological vision, such as 
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motion coherence and induced motion, in a way comparable 
with the approaches of Yuille and Grzywacz33 as well as of 
Bülthoff et al.5  Finally, it must be pointed out that, in bio-
logical systems, form independence of visual motion analy-
sis can be regarded as a direct consequence of the crucial 
role that the common properties of real-world motion and 
movement stimuli play in the process of neural self-organi-
zation:  Only great numbers of identical stimulations, i.e., 
repeated signal coincidences, lead to the consolidation of 
synaptic interconnections.

APPENDIX A:  CONVOLUTIONS INVOLVING 
�-LINE FUNCTIONS

The values F resulting from integrations over cross sections 
through �-line functions play an essential role for convolu-
tions involving such functions.  In what follows it is shown 
that the parameter Fxy, which is relevant for the convolution 
of Eq. (9), is not a function of time t.  This property is due to 
the speci
c formulation given by Eq. (8), which ensures that 
temporal �uctuations of the object intensity do not occur 
during object motion.  According to Bamler,34 the reciprocal 
integral value in a plane perpendicular to the tangent of the 
� line equals the modulus of the outer product w r( , )t  of the 
three-dimensional normal vectors �a tx( , )r  and �a ty( , )r :

 w r r r( , ) ( , ) ( , ) ( , , )t a t a t w w wx y x y t� � �� � T. (A1)

The normal vectors of the argument functions of Eq. (7) be-
come

 � � 	� � � 	a t X t t v tx x( , ) , , ( ) , , ( )[ ] [ ]r 1 0 1 0T T  (A2a)

as well as

 � � 	� � � 	a t Y t t v ty y( , ) , , ( ) , , ( )[ ] [ ]r 0 1 0 1T T. (A2b)

Their outer product turns out to be a vector that is indepen-
dent of the x y coordinates:

 w r w( , ) ( ) ( ), ( ),[ ]t t v t v tx y� � 1 T. (A3)

The reciprocal modulus of its component wt , i.e., the consid-
ered integral value

 F wxy t� �1 1, (A4)

is indeed constant.
In order to compute the function b th( , )r  one needs to know 

the integral value Ft, which depends on the components wx  
and wy of the vector w( )t  [cf. Eq. (A3)]:

 F w w v tt x y� � �1 12 2 ( ),  v t t( ) ( )� �v 0. (A5)
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