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A systematic procedure for the extraction of multiple-invariant shape descriptors is 
introduced that is based on generalised auto-correlation functions. It can be carried out 
in parallel processing networks that also serve the extraction of motion parameters by 
flow-field analysis. It is argued that this dualistic processing principle is neurobiologi-
cally relevant. Models of neural networks are presented and their properties in both 
modes are discussed.

1. INTRODUCTION

The extraction of invariant shape descriptors and the characterization of object and self-induced 
motion are essential for the successful behaviour of living beings in natural environments but they 
are also of increasing importance in the field of robotics. In this article it is argued that certain 
neural structures of the visual system are suited to jointly perform both tasks, depending on the 
stimulus: moving or nonmoving. The question arises, whether this putative biological solution – 
that may have evolved from the demand for neural self-organization – is also of some value for 
technical systems.

Differing from the original research that was aimed to explain multiple-invariant pattern recog-
nition in the visual system this article starts with the introduction of a basic device that enables 
a neural network to perform both tasks: transformation-invariant shape description and object-
independent motion analysis. After its introduction, the mathematical principles of both modes of 
parameter extraction are presented and exemplified by model networks for flow-field analyses and 
similarity-invariant shape descriptions.

2. ELEMENTARY MOTION DETECTOR

A variety of mechanisms for the detection and analysis of visual motion have been proposed (cf. 
the survey by Ruff et al. [1]). Most of them have their roots in the model circuit of a motion detec-
tor proposed by Hassenstein and Reichardt [2,3] for the insect eye. With the following assumptions 
it is sufficient to consider a simplified mechanism:
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it is tuned to.

2.1 Dynamic Properties

Any elementary motion detector unit must perform at least a second order operation in space and 
time. More precisely, the temporal succession of signals at two points of the pattern representa-
tion must be compared (correlation). Figure 1a shows an idealised Hassenstein�Reichardt-detector 
(HRD) – that performs this task under the above mentioned conditions – together with a symbol-
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ised stimulus. The detector unit is tuned to the velocity

� �
v

Ttune �
�

Δ
 , (1)

i.e. for pattern points of the corresponding speed and direction the comparator “�” delivers an out-
put signal. With a multiplying comparator a unit’s output signal is the product of the values at one 
or two pattern points (auto-correlation). For exotic stimuli, such as periodic patterns (e.g. gratings) 
that are translating in fronto-parallel planes HRD units may also signal multiples of the actual 
pattern velocity. However, pooled output signals of sets of equally tuned but spatially distributed 
HRD units – that are commonly considered for motion analysis – quite well reflect the velocities 
of real world objects.

In the following it is assumed that the tuning speed vtune is determined by the spacing � of the 
HRD inputs or sensors. This kind of tuning is in accordance with the findings of van de Grind et 
al. [4] who showed in psychophysical experiments that the delay ΔT  is indeed constant (typically: 
ΔThuman ms� 60 ) for common speeds (� 2° s). (Thus, one can suspect interneurons to be responsi-
ble for the delay. Furthermore and according to Koch and Poggio [5], the coincidence interval �T  
of the neural comparator is about 1% of ΔT .)

2.2 Static Properties

Besides their dynamic properties (spatio-temporal correlation) the here considered HRD units 
also perform spatial comparisons within static patterns, i.e. of patterns that are at rest for t Trest � Δ . 
This spatial auto-correlation mode is symbolised by Figure 1b. It will be demonstrated that gener-
alised auto-correlation functions (generalised ACFs) of order two can be computed from pictorial 
patterns by this dipole approach, if
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The generalised auto-correlation analysis is the basis for a systematic approach to invariant shape 
descriptions of pictorial patterns.

Evidently, there is no explicit switching between the dynamic and static mode of analysis (dual-
ism) – except by observer-induced motion (e.g. eye or body movements): the switching occurs if the 
relative motion between patterns and the image plane exceeds or falls below a minimum speed that 
is essentially determined by the spatial resolution �min of the image representation.

FIGURE 1a
Velocity selective (uni-directional) motion detector 
(HRD)

FIGURE 1b
Same detector signalling the presence of a (bi-direc-
tional) dipole relation of a static pattern (t Trest � Δ )
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3. GENERALISED AUTO-CORRELATION FUNCTION

The generalised ACF of order m of a pattern function b r( )
� � 0 is mathematically defined [6,7,8] 

by

c z z b r rm
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m

i( ) { }
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� 	 
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�
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r x y� ( , )T, (2)

where 
i

m

�1
�[ ]�  stands for a conjunctive operation on m terms (order m), e.g. the multiplica-

tion;

and � �i iz� ( )
�

 indicates geometric transformations (mappings 
� �
r r� �) of the pattern function 

that are characterised by �-dimensional parameter vectors 
� �z z zi i i� ( )1 �

T .

If the inverse transformation ��1 exists, the generalised second order ACF can be written as

c z b r b r r( ) ( ) { }� � � � �� 	 

 � d , (3)

where “�” denotes a conjunctive comparison operation. Equation (3) provides a rule for the extrac-
tion of pattern invariants under defined transformations. More precisely, the resulting coefficients 
express the degree of a pattern’s transformation invariances: the distance or similarity between the 
transformed and the original pattern is determined according to a suitable measure. Generalised 
ACFs that depend on a single kind of geometric transformation � (� � 1) are by definition invari-
ant under this kind of transformation, independent of its extent (inherent invariance). In general 
this holds neither if several types of transformations � are applied, nor for the invariance regard-
ing several kinds of transformations. Given such cases, multiple-invariant intersections need to be 
determined from sets of coefficients of restricted invariance.

There are two methods for the computation of the generalised ACF: While the explicit transfor-
mation to pattern functions is straightforward, the approach using generalised dipole moments is 
perhaps less obvious. With the latter, values at pixel pairs that are related by the same parameter 
vector 

�
z  (dipoles) are compared and summed. When confronted with static patterns this implicit 

analysis can be performed by suitably arranged HRD units: their output signals represent two-
point relations that remain to be properly pooled.

4. FLOW-FIELD MOTION ANALYSIS

Ordered arrangements of HRD units, the inputs of which appropriately sample the image plane, 
can serve for the extraction of motion parameters. For this purpose flow-fields that are caused by 
projections of moving objects to an image plane are compared with models of vector-fields that are 
implemented as motion specific HRD configurations. Although in general the relative activation 
of differently structured and thus tuned model networks provides flow-field descriptors, in simple 
systems the detection of the best responding network may suffice. Advantages of this kind of mo-
tion analysis are its
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Two idealised examples of such flow-field analyses are presented:
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instance, when moving through a forest while looking straight ahead.
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shoulders.
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4.1 Depth-Motion

Only a few principles of projective geometry are needed to understand the proposed depth-motion 
analyser. They are introduced by Figure 2 that represents a sectional view of an idealised pinhole-
camera looking in the Z-direction. The projection centre is situated at r Z� � 0 and, for conven-
ience, the image plane is assumed in front of it at Z L�  (“focal length”). With these conventions, 
the relation between the coordinates R and Z of an object point in the field of view and the coordi-
nate r of its projection to the image plane is

r L R
Z

� �  . (4)

Obviously, position r not only depends on a point’s distance Z but also on its position R referred to 
the line of sight (Z-axis). Consequently, any analysis of motion in Z that is directly based on Equa-
tion (4) is object-dependent. Conversely, any object-independent analysis must be based on the 
invariant quantity of depth-motion, namely the scale factor (object expansion or contraction)

s
Z

Z
r
r

i

i

i

i
� �

�

�

1

1  . (5)

According to the investigations of Regan and Beverley [9] this applies to the human visual system 
as well. A network constructed from HRD units for the detection of the factors s � 1 5.  and s � 2 0.  
is sketched beneath the r-axis in Figure 2. The scale factors defined between successive positions 
of object points in their projections are referred to the origin, e.g. to the centre of the “fovea”, and 
the output signals of HRD units that are tuned to the same factor are summed. Each thus defined 
set of HRD units makes up a radially organised network. A reasonable analyser system can be es-
timated to consist of 50…100 networks tuned to scale factors that typically range from 1.01 to 4.0. 
A second stage of analysis selectively signals motion in depth which is achieved by HRD units that 
are tuned to the instantaneous temporal succession of scale factors that – for vZ � const. – follows 
the hyperbolic law expressed by Equation (5).

s T
t

� �1 Δ  (5a)

Hence, an active HRD unit in the second stage indicates a specific instantaneous “time-to-contact” 
(more precisely its inverse value), or – if the relative speed vZ  parallel to the line of sight is known 
– an object’s distance Z.

Systems for analyses of depth-motion having vector-components in R-direction – i.e. of motion 
trajectories that, when projected to the image plane, intersect the line of sight at angles � – are 
identically structured but centred extra-foveally on (fixed) points of radial coordinates

r L� �tan�  . (6)

Such flow-fields can result from self-induced motion, if the line of sight does not coincide with the 
movement direction.

4.2 Fronto-Parallel Rotation

Analysers for front-parallel rotation are circularly organised and centred on the fixed points of 
rotation. Each system consists of isotropically organised networks around a common fixed point 
and tuned to a spectrum of angular velocities �. Each network consists of concentric arrangements 
of HRD units with inputs on circles and separated by a common angle

� �� �ΔT  . (7)

To avoid “crosstalk” between systems of different fixed points the continuity of the activity of each 
system is again monitored by HRD units in a second stage.
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FIGURE 2
Central projection of two approaching (vZ 0 � const.) particles (large hatched discs in solid circles) to the image plane 
at Z L� , shown at three moments separated by Δ ΔT Z vZ� 0 . Beneath the image plane is a partial view of a two-
stage HRD-based network that serves the object-independent detection of the “time-to-contact”. A third particle 
(hatched discs in dashed circles) at twice the distance and speed (2 0vZ � const. ) activates the same detector
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5. INVARIANT SHAPE DESCRIPTORS FROM FLOW-FIELD ANALYSERS

In this section the extraction of two shape descriptor functions is exemplified that are invariant 
under all similarity transformations, i.e. rigid translations, scale changes, rotations and reflections 
(similarity-invariance). It is shown that the introduced flow-field analysers for depth-motion and 
fronto-parallel rotation provide appropriate structures for the evaluation of such multiple-invariant 
features. In what follows HRD units with multiplying comparators are assumed.

Figure 3 represents a partial view onto the image plane and a more elaborate first stage of a model 
network serving depth-motion analysis. The radial layout of integration areas (large white circles) 
of the HRD units (encircled letters) is centred on the fixed point of expansion or contraction, e.g. 
the fovea centralis. The sketched network is tuned to pattern expansions of s � 1 5.  and differently 
tuned networks must be imagined as being superimposed. The spatial resolution decreases with 
eccentricity in order to keep the relative error constant. Furthermore, the analysis is carried out 
locally in overlapping radial subdivisions (bold frames) of a system’s sectors (see Section 5.3).

The corresponding network structures of a system for the analysis of front-parallel rotation is 
straightforward.

5.1 Descriptor Function of Size Relations

In the static mode a complete and global analyser system composed of networks of the type shown 
in Figure 3 calculates the zoom-ACF

c s r b r b r s rs f0 0, ( )
� � � �	 
 � � 	 

 d  . (8)

This generalised ACF depends on the scale factor s referring to the origin (fixed point 
� �
rf 0 0� ). As 

mentioned in Section 3, it is size-invariant by definition and this inherent invariance is independ-
ent of the applied or implemented scale factors. In addition, the zoom-ACF is invariant under rota-
tions around the fixed point and under reflections on axes passing through it.

To get rid of the limitation imposed by fixed points, i.e. of the missing shift-invariance, it is pro-
posed to extract the similarity-invariant descriptor function

C s c s rs
r

s f
f

( ) max ( , )� � ��
�

 . (9)

Equation (9) presupposes a multitude of analyser systems that are centred on different fixed points. 
As outlined in Section 4.1, multiple systems are also required for the analysis of arbitrary depth-
motion. The descriptor function indicates a pattern’s maximum degree of self-similarity as a func-
tion of scale. Consequently and to mention the extremes, the descriptor does not depend on s for 
patterns consisting of straight lines that join or intersect at a common point, but it pronouncedly 
decreases C s C ss s( ) ( )� �1 1�  for patterns made up of curved lines.

5.2 Descriptor Function of Angle Relations

In the static mode a complete and global system for the analysis of fronto-parallel rotation com-
putes the rotation-ACF

c r b r b r r rf� � � � � �0 0, ( ) cos( ), sin( )
� � �	 
 � � � �� � d

  (10)

with r r� �  and � � arg( )
�
r  .

This generalised ACF depends on rotations (angle �) around the fixed point 
� �
rf 0 0� . Like the 

zoom-ACF it is rotation and size-invariant, both referring to the fixed point and under reflections 
on axes passing through it.
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FIGURE 3
Top-view of a single sector of a radially subdivided network for the detection of pattern expansions by factor s � 1 5. . 
Bold frames: overlapping local analysers (receptive fields of local summation units); encircled letters: HRD units 
(nonlinear subunits); white discs: integration areas of the HRD inputs
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Again it is suggested to derive a similarity-invariant descriptor function

C c r
r

f
f

� �� �( ) max ( , )� � ��
�

 , (11)

and again a multitude of analyser systems with different centres of rotation (fixed points) are re-
quired but are desirable for versatile motion analysis as well. The descriptor function reveals the 
maximum angular relations of a pattern. Consequently, a perfect circle is the only extended pattern 
for which the descriptor does not depend on �, and it is a periodic function for regular polygons 
or star-like patterns.

Further properties of both descriptor functions and of related descriptors are exemplified in [7] and 
in much greater detail in [10].

5.3 Local Analysis

The extraction of motion parameters by local flow-field analysis in subdivided networks can ad-
ditionally provide estimates about the size of a moving object and about its position with regard 
to the vanishing-line, i.e. the line passing through the corresponding fixed point and the projec-
tion centre. Another reason for local analyses is the limited biological “fan-in” of the summation 
units: If comparisons are performed by nonlinear interactions of neighbouring dendritic synapses 
[5,11,12,13], the results of which (e.g., products) are summed at the soma of a single neuron, then 
at most the output signals of few thousands of HRD units may be pooled. Consequently and even 
if pattern representations of low spatial resolution are assumed, only rather small areas can be 
analysed by a single neuron, each consisting of hardly more than about 100 100�  pixels.

Essentially two parameter-dependent conditions must be met by networks that locally compute 
generalised ACFs (e.g. see Figure 3):
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Regarding depth-motion systems this means local areas of minimum radial extent s2 and two su-
perimposed series of such areas that are radially shifted with respect to each other by the factor s. 
Rotation analysers require local areas of minimum circular extent 2�  and two superimposed 
series that are rotated with respect to each other by �. Both kinds of systems may be subdivided in 
arbitrarily narrow sectors or rings respectively.

5.4 Fixed Point Descriptors

Finally two powerful invariant shape descriptors are to be mentioned. They characterize the con-
figurations f rs

�
opt	 
 and f r�

�
opt	 
 that are made up by the optimum fixed points and their frequency 

of occurrence. These patterns can be constructed during the evaluation of the descriptor functions 
Cs  and C� , and they can replace the pattern function b r( )

�
 in Equations (8) and (10) (hierarchical 

processing). The resulting features describe inner bindings of configurations of the optimum fixed 
points and thus they express abstract pattern properties, such as compactness and complexity [10].

6. BIOLOGICAL RELEVANCE AND IMPLICATIONS OF 
THE DUALISTIC PROCESSING PRINCIPLE

J.J. Gibson states [14]: “[The] essential structure consists of what is invariant despite the change.” 
This dialectic view backs the presented dualistic approach but it also suggests a solution to the 
problem of system formation, because the self-organization of networks of the discussed kind is 
hopeless from the viewpoint of shape analysis alone. Systems serving motion analysis, however, 
are quite likely to develop through self-induced motion. In this respect, object-independence of 
motion analysis is an immediate consequence of the crucial rôle common properties of real world 
motion�movement-stimuli play for self-organization processes because the consolidation of syn-
aptic interconnections requires highly repetitive stimulation and thus signal coincidences.
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As discussed elsewhere [14,15,16], invariant shape descriptors are vital for creatures in natural 
environments. Advantages of the proposed kind of multiple-invariant descriptor functions are 
their descriptive power and their ability to express symmetries, congruences, similarities etc. of 
patterns, i.e. properties that belong to categories of (human) form perception known from Gestalt-
psychology that can hardly be extracted by template matching techniques, integral transforma-
tions included. It is shown in [10] that none of the currently known methods of feature extraction 
show a comparable degree of biological plausibility.

Presently there is some biological evidence for the described processing concept: Various research 
groups have neurophysiologically identified systems for flow-field analyses of the discussed type 
in monkey and cat [17,18,19,20]. The spatio-temporal properties of receptive fields of formal neu-
rons in the proposed networks agree well with measured ones [10]. Although the response of such 
brain areas to static stimuli have not been tested yet, some of the experimental data obtained by 
Price et al. [20] (cf. their Fig. 12c) conform with predictions made in [10]. Psychophysical inves-
tigations show that shape analysis of moving objects is impossible if pursuit (eye) movements are 
prevented [21]. Only recently and in a similar vein McLeod et al. [22] could demonstrate that the 
human visual system segregates randomly distributed displays of moving and nonmoving symbols 
in moving and static. Only then parallel shape analysis (cf. Treisman’s paradigm) takes place in 
either group (preferably the moving) without being influenced by items in the other. Finally, the 
distribution of inter-saccadic fixation times is known to peak around 180 ms and to vanish for dura-
tions shorter than about 80 ms [23,24] which suggests the minimum amount of time required for 
shape analyses as being of the order of ΔT .

Motion analysis based on comparisons between flow-fields and structurally stored vector-fields 
(flow-field matching) explains a variety of psychophysical findings, such as cooperative motion, 
motion capture and related coherence effects, as well as motion segmentation [10]. The authors 
of a recently introduced computational principle [25] that is functionally similar to the proposed 
structural concept, reach comparable conclusions concerning motion perception.

Finally, it is noteworthy that networks of the kind sketched in Figure 3 that consist of formal neu-
rons as summation units for thousands of (pair wise) nonlinearly interacting input signals (HRD 
units) conform with so-called subunits that are conjectured to constitute (complex) receptive fields 
[26,27]. The spatial resolution of such analyser networks can hardly be deduced from the size 
of the receptive fields of their neurons. To experimentally access and investigate single subunits, 
novel techniques are required. Moreover, it must be doubted that the conventional concept of 
receptive fields allows valid conclusions about the signal processing function of neurons in such 
networks.

7. CONCLUDING REMARKS

While the analysis of spatio-temporal patterns by two basic types of idealised systems was exem-
plified, analysers for more complex flow-fields – as they are caused by three-dimensional objects 
that arbitrarily move in space – in the static mode will result in affine or even projective ACFs from 
which the extraction of multiple-invariant shape descriptors is no longer as easy. However, toler-
ance with regard to small and local pattern deformations is obtained through the spatial averaging 
at the inputs of the HRD units (cf. Figure 3).

The concept of invariant descriptions by functionally grouped dipole relations of pictorial patterns 
is a model example for visual information processing at the signal level in biologically plausible 
structures: On one hand, parallel computing networks had to be developed that perform the opera-
tions formulated in Equations (8) and (10). On the other hand, self-organization of these networks 

– e.g. of the specific interconnections between HRD units and summation units – had to be con-
sidered. The eventual dualistic approach represents another example of fundamental differences 
between biological and technical solutions of information processing tasks.
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