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Rotating gratings reveal the temporal transfer function of the 
observing system
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Abstract. It is shown that a rotating sinusoidal grating is a useful sweep signal 
for the analysis of the temporal behaviour of linear imaging systems. For a 
suitably chosen angular velocity and spatial frequency, the spatial a.c. component 
of the grating appears modulated in one dimension at the output of the system. 
The profile of this modulation is the temporal transfer function (TTF) of the 
system. A quantitative analysis of this effect is presented, and results from 
experiments with a photographic camera are shown. It is proposed to use this 
method in the field of vision research since it is presently the only way to 
demonstrate the complex-valued TTF of the visual system for suprathreshold 
grating stimuli. The main consequence of the first psycho-physical investigations 
was the discovery of a phase reversal at the origin of the TTF of the human visual 
system for gratings of low spatial frequency.

1. Introduction
The rotationally symmetric, zero-order Bessel function J f rr0 02( )� , with 

r x y� �( )2 2 1 2, has an interesting Fourier transform : a �-circle of radius f r 0. Thus it can 
be seen to be a monofrequent and isotropic function (cf. equation (A 4) in Appendix A). 
It is because of these properties that it is used as a stimulus pattern in vision research 
[1]. For this application, the Bessel pattern varies around a sufficiently high d.c. bias, 
thus representing a purely positive function. Such a pattern can easily be generated 
by incoherent optical means : a grating of sinusoidal profile (sinusoidal grating) or, 
more precisely, an intensity distribution of this kind, is recorded while it is rotated 
by multiples of 360 degrees around an axis perpendicular to the grating plane 
(H. Platzer, 1981, private communication). The modulation depth of the resulting 
pattern depends on that of the grating and on the phase shift of the grating with 
respect to the rotation centre (mathematical details are given in Appendix A). Of 
course, such a pattern can be observed directly if the angular velocity is sufficiently 
high that the angular motion is no longer perceived by the visual system (flicker 
fusion).

If a sinusoidal grating in cosine phase (figure 1) rotates by considerably less than 
180 degrees around its origin in the xy-plane while it is recorded, a bar-shaped 
modulation is observed. It is also observable if the angular velocity is small compared
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Figure 1. Scans of a cosine grating on circular paths.

with the flicker fusion frequency of the visual system. This remarkable effect, already 
described by Babington Smith [2] (he calls it ‘band of heightened intensity’), is 
explained in this paper. Differing from the more phenomenological investigations of 
Wade [3], it is shown that the temporal transfer function (TTF) of the observing 
system is thereby revealed. In other words, it is demonstrated that rotating 
sinusoidal gratings can be used as sweep signals for the analysis of the temporal 
frequency response of imaging systems : depending on the grating frequency, sections 
through the (three-dimensional) spatio-temporal transfer function of a system can be 
produced. Practical time-dependent imaging systems show a lowpass or bandpass 
behaviour, i.e. they have an overall integrating characteristic. Two types of such 
systems must be distinguished : those for which the integration time is equal to 
the observation time, and those whose integration time is in general less than the 
observation time. The photographic camera (inter-lens shutter), as an example of the 
first kind, and the human visual system, as one of the second type, were analysed 
using this temporal sweep technique. The application of this method to the human 
visual system is of particular interest since, until now, its temporal behaviour 
could only be determined via pointwise modulation threshold measurements (stimuli : 
flickered or linearly moving gratings) which result in a positive-valued temporal 
contrast sensitivity function (CSF). The proposed sweep technique, however, allows 
the observation of the entire complex-valued TTF for an arbitrary suprathreshold 
sinusoidal grating [4].

2. Rotating gratings
A mathematical analysis is given of spatio-temporal effects associated with the 

observation of rotating sinusoidal gratings by temporally integrating systems. 
Differing from an earlier approach [5], the following treatment is based entirely on 
signal descriptions in the space-time domain. A vertically oriented grating in cosine 
phase of a spatial frequency f X� 1 , a mean intensity I 0, and a contrast or spatial 
modulation m is considered (see figure 1) :

 g x y I m x X( , ) cos( )� �� �0 1 2�  . (1)
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For the following mathematical derivations the grating is assumed fixed and the 
observing system rotates around its optical axis. The temporal signal ‘seen’ by a 
point with polar coordinates r and �( )t � �0 0 in the output plane of an ideally 
transmitting system (TTF � const.) is

 e r t I m t( , ( )) cos ( )� �� �� �0 1  with � � �( ) ( ) cos ( )t r X t� 2  . (2)

For a constant angular velocity � the rotation angle �( )t  is

 � � �( )t t nt� � 2  , (3)

where n denotes revolutions per time unit. For r � const., the output signal e t( ) is 
easily identified as a cosinusoidally phase-modulated cosine function of modulation 
index 2�r X . Figure 2 shows such functions for the nine radii indicated in figure 1. 
These plots are actual analogue recordings of the photocurrent of a small detector 
situated in a plane onto which a rotating grating was projected.

Figure 2. Phase-modulated signals from actual circular scans of a cosine grating of contrast 
m � �0 4. The numbers refer to the radii indicated in figure 1 (�r X� �0 3 ). The angle � 
runs from zero to 360 degrees.

The instantaneous angular frequency �inst of the phase-modulated signal of 
equation (2) is defined by

 � � � � � �inst d d( , ) ( ) sinr t r X� �	2  , (4)

and the instantaneous frequency in Cartesian coordinates is

 � �inst � y X  with y r� sin� . (5)

This relation between �inst  and the coordinate y is the reason why a rotating grating 
is a suitable temporal sweep signal : the loci of constant instantaneous temporal 
frequency are parallels to the x-coordinate (see figure 1), i.e. straight lines orthogonal 
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to the grating lines. Thus, different temporal frequencies appear at different line-like 
locations.

3. Representation of temporal transfer functions
Again, the output signal at a certain point in the sensory plane of an imaging 

system is considered. This time, however, the system is assumed to have a TTF that 
is other than constant, which means that e t( ) is filtered, resulting in an amplitude-
modulated signal. This amplitude modulation is approximately described by a signal 
attenuation according to the TTF at the corresponding instantaneous frequencies. 
According to equation (5) they appear at different parallel lines ( y � const.), and thus 
the TTF of a linear space-invariant system is given by the modulation profile along 
the grating lines.

As with all investigations of frequency responses based on sweep techniques, the 
accuracy of the results increases with a decrease in the sweeping speed. This is due to 
the fact that the system is not tested with stationary harmonic functions but with a 
sweep signal approximating a temporal sequence of such functions. The quality of 
this approximation depends on the difference between the frequency of a stationary 
harmonic oscillation and the corresponding instantaneous frequency of a sweep 
signal (cf. Appendix B, equations (B 1)–(B 3) ), i.e. on the rate of change of the 
instantaneous frequency :

 �� � � � �inst instd d� �	t r X2 2( ) cos  , (6)

or in Cartesian coordinates :

 �� ��inst�	2 2x X  with x r� cos�  . (7)

Therefore, the loci of constant error ( ��inst const.� ) are parallels to the y-axis. The 
number of grating cycles k x X�  within which the error is less than a certain value 
decreases according to the square of the inverse angular velocity. A thorough 
analysis, considering common lowpass systems, shows that the error is in the order 
of a few per cent for k 
 5, if �0 30� n ; where �0 is the temporal cut-off frequency of 
the lowpass and n is the frequency of rotation (see Appendix B).

4. Photographic camera
A processor for the generation of precise, sinusoidally varying gratings is 

sketched in figure 3 (a). A binary cosine-shaped template T (figure 3 (b) ), illuminated 
through a ground-glass diffusor G, is ‘smeared’ orthogonal to its ordinate by means 
of a cylindrical lens system A. The resulting light distribution can be rotated by a 
stepper-motor-driven Dove prism DP. The grating is projected onto the screen S by 
the lens O. This method allows the production of high-contrast sinusoidal gratings 
with low total harmonic distortions (THDtyp
 5 per cent).

Figure 4 (a) shows a photographic recording of the light intensity in the plane 
of the screen for the following system parameter : 1 2 160( )� �n n� � , where � is 
the exposure time (integration time). In figure 4 (b), the modulation profile for an 
ideally rectangular exposure function (figure 4 (c) ) of an inter-lens shutter (CS in 
figure 3 (a) ) is sketched. The phase shifts of 180 degrees (changes of sign) are clearly 
seen from figure 4 (a) and thus experimental evidence is given for the capability of  
this method to display complex TTFs.

The effect of parameter changes on the recorded pattern can be studied from the 
results shown in figure 5. In these experiments, � was held constant in order to obtain
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Figure 3. (a) Optical processor for the generation of rotating gratings and (b) examples of 
templates T that are used for the production of sinusoidal gratings.

Figure 4. (a) Modulation exhibited by the inter-lens shutter system. (b) Modulation profile 
for (c) an ideally rectangular exposure function.

equal exposure conditions, while the normalized speeds of rotation �n  and spatial 
frequencies �f  of the grating were chosen as indicated. For each photograph the 
corresponding normalized scale factor � � �y n f� 1 4( ) is given. The loss of accuracy with 
increasing angular velocity and spatial frequency according to equation (7) is clear.

5. Visual system
Since we generally look at a pattern significantly longer than the integration time 

of our visual system, the bar-shaped modulation exhibited by a rotating grating is
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Figure 5. Effect of the parameters speed of rotation and spatial frequency on the modulation 
(inter-lens shutter with constant exposure time).

observed as turning at the same angular velocity as the grating itself. This makes 
it inconvenient to work at high frequencies of rotation. On the other hand, it is 
necessary to increase the frequency of rotation if the spatial frequency is decreased 
in order to display the entire TTF on a screen of fixed diameter or viewing angle. 
The latter, however, should not be too large in order to guarantee a sufficient space-
invariant processing (in a global sense) [6–8].

The following rather qualitative results will, it is hoped, stimulate more extensive 
experiments to be performed by researchers in the field of psychophysics. In 
preliminary experiments the well known dependence of the flicker fusion frequency 
on the mean intensity [9, 10] could qualitatively be confirmed. For these investig-
ations the experimental set-up of figure 3 (a) was used. A pair of line-like markers M,
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oriented parallel to the template T and symmetrical to the optical axis, was 
introduced in the object plane of the imaging system A-O. Therefore, the markers 
rotated together with the grating. Subjects were able to alter the distance of the 
markers. For the measurements the subjects were asked to adjust the width so that 
the modulated area was just contained between the lines. (Another method for the 
measurement of the bar width is based on a masking effect described by Wade and 
Sanford [11, 3].) The display diameter was 3 5�  degrees in a dark surround, the 
modulation contrast was 55 per cent, the viewing condition was binocular with 
natural pupil, and the subjects were asked to fixate on the centre of rotation. The 
mean intensity was varied between 0 1�  and 10cd m-2. The change from temporal 
lowpass to bandpass behaviour with increasing spatial frequency and/or mean 
intensity (see the reviews [7, 12], and [10]) was also clearly observed. The most 
important result, however, was a phase shift of 180 degrees that was observed for 
spatial frequencies typically lower than one cycle per degree and temporal frequencies 
near zero (also denoted as ‘shimmering effect’ [3]) ; which confirms a recently 
formulated concept [13]. The effect is best observed with high intensities 
(I 0 1� cd m-2) and very low rotational frequencies (n 
 � 	0 5 1s ). As soon as the 
grating starts revolving, the grating lines begin to shear along a line that is oriented 
orthogonal to the grating and passes through the centre of rotation.

In short, the unique features of this stimulus configuration and measurement 
technique are the feasibility to observe directly

(1) the entire TTF,
(2) magnitude and phase of the TTF,
(3) the TTF for supra-threshold modulations, and
(4) the dependence of the TTF on the grating orientation.

Furthermore, the method is based on a moving, not flickering grating, i.e. on the 
more natural stimulus [7].

6. Concluding remarks
While working with rotating gratings, two further useful applications were 

found. Even-order harmonics of gratings are easily detected if they are rotated at 
high angular velocities in sine phase. If a grating contains no even-order harmonics, a 
temporally integrating system ‘sees’ a constant intensity, i.e. no spatial modulation. 
Otherwise, radial modulations occur (for details see Appendix A). Thus, this method 
permits, for instance, the testing of sinusoidal gratings for their spectral purity (at 
least concerning even-order harmonics) and of square-wave gratings for their exact 
duty cycle of 1 : 1.

The second application is again in the field of psychophysics. Thus far, there is no 
consensus regarding the mechanisms that are responsible for the visibility, during or 
after saccadic eye movements, of structures that actually move or flicker faster than 
the temporal resolution of the visual system [14, 15]. The question is whether it is a 
tracking effect (tailing) or whether spectral components are mixed into the passband 
of the visual system by the high velocity of saccades (switching effect). Gratings, free 
from even harmonics, which rotate fast enough in sine phase so that no flicker effect 
and spatial modulation are observable, suddenly become visible over the entire 
display area during voluntary eye movements. This phenomenon must be due to the 
switching effect since rotational saccades are not known to exist.

In this paper it was demonstrated that rotating gratings are useful test patterns in 
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the field of optics, electro-optics and vision research. They permit a pictorial 
representation of the temporal transfer functions of imaging systems.

Acknowledgements
I thank H. Platzer for the initial idea and his unfailing interest in the 

investigations, T. Kramer for his help with the dynamic transfer functions (Appen- 
dix B), Dr R. Bamler for the highly mathematical discussions during the prepara-
tion of this paper, Professor G. Hauske and Dr T. Elsner for their advice concerning 
the field of psychophysics, and Dr N. J. Wade for essential hints.

Appendix A
A vertically oriented grating-like intensity distribution of the spatial frequency 

f x0, with a phase shift � �0 0 02� f xx , a mean intensity I 0, and a contrast 0 1
 �m  is 
given by

 �g x y I m f x xx( , ) cos ( )� � 	� �� �0 0 01 2�  , (A 1)

and its Fourier-spectrum is

 
�G f f I f f f f fx y x y

m
x x y( , ) ( , ) exp( ) ( ,� � 	 	0 2 0 0� � �i����

� � � ���
)

exp( ) ( , )i .� �0 0f f fx x y
 (A 2)

The phase terms in equation (A 2) are due to the phase shift �0 of the grating. They 
vanish for gratings in cosine phase. The mean energy E( )�  (spatial integral) of the 
temporally integrated (duration �) rotating grating �g x y t( , , ) is thus given by

 E I I f fx y( ) ( , )� � � �� � � �	
0

1
0�  . (A 3)

For temporal integrations over rotations of multiples of 360 degrees (E E( )�0 0� ), 
each �-function of the pair in equation (A 2) forms a �-circle. The inverse Fourier 
transform of a �-circle is the rotational symmetric zero-order Bessel function J r0( ) :

 �xy r r r rf f f J f r	 	� � �1
0 0 0 02 2� � �( ) ( ) (A 4)

with f fr x0 0� , the radial frequency f f fr x y� �( )2 2 1 2 and the radial coordinate in the 
space domain r x y� �( )2 2 1 2. Owing to the rotation, both �-circles add up and result 
in the modulation

 �m mm� 	 � �� ��2 0 0 0exp( ) exp( ) cosi i� � �  . (A 5)

With J0 0 1( )� , the relation between the energy integral of the d.c. component E0 
and that of the a.c. component A0 can be formulated by using the equations (A 3)– 
(A 5) :

 E m A f f f f A f fr r x y r r r0 0 0
1

0 0� � 	 � 	� ��� 	
�

� �( ) ( )d d �
00 0 02� A fr�  , (A 6)

and thus the mean energy of the pattern is

 E I A f mr0 0 0 0 02� �� � �  . (A 7)

Finally, the function b r( ) resulting from a rotating grating g x y( , ) is given by

 b r I m J f rr( ) cos ( )� �� �0 0 0 0 01 2� � �  (A 8)

which implies b r( )� const. ; for example, for a phase shift of �0 90� ° .
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Appendix B
The errors resulting from the analysis of the frequency response of a system by 

use of a sweep signal instead of stationary harmonic signals can be approximated 
quite well by introducing the so-called dynamic transfer function [16]. For a 
harmonic signal u t tt1( ) cos( )� �  of the temporal angular frequency �t  the output u t2( ) 
of a system, with a transfer function S t( )� , is given by

 u t S u tt2 1( ) ( ) ( )� �  , (B 1)

whereas the output e t2( ) resulting from a phase-modulated signal e t t1( ) cos ( )� �  is 
approximated by

 e t S e t S2 1
1
2( ) ( ) ( ) ( )sin (� � ��� � � �inst inst inst� tt ) (B 2)

with
 �� �S S( ) ( )� � �inst inst inst

2d d2  .

A comparison of the equations (B 1) and (B 2) reveals that the second term of the 
latter is the error 	:

 	 � �� ��1
2 � inst instS ( )  , (B 3)

or with equation (7),

 	 �� �� ��2( ) ( )x X S inst  , (B 4)

where � �� 2 n  denotes the angular velocity of the rotating grating (cf. equation (3)). 
Obviously, the error depends on the second derivative of the transfer function. 
For the transfer function SS t( )�  of an ideal shutter (cf. figure 4) with the cut-off 
frequency �0

 SS t t t t( ) sin ( ) ( ) sinc ( )� �� � �� � � �� � � � �� �2 2 20 0 0 �� , (B 5)

the number of grating cycles k x XS�  defining the span within which the error is 
less than 	 can be approximated by

 kS� ( ) ( )12 3
0

2� 	 � �  . (B 6)

For a Gaussian lowpass

 SG t t( ) exp ( )� � � �� 	� �1
4 0

2  , (B 7)

the corresponding number of grating cycles kG  is

 k kG S� �( ) ( )2 62
0

2� 	 � � �  . (B 8)
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