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INVARIANT DESCRIPTION OF PICTORIAL PATTERNS VIA
GENERALIZED AUTO-CORRELATION FUNCTIONS

Helmut Gliinder
Lehrstuhl fiir Nachrichtentechnik, Technische Universitit Miinchen
Arcisstr. 21, D-8000 Miinchen 2, FRG

Abstract. A systematic approach to geometrically invariant pattern description is proposed. It is based on the definition of
transformation invariants. The generalized auto-correlation function is introduced as a signal representation from which such
invariant descriptors can be derived. Descriptors remaining invariant under all similarity transformations are briefly discussed.

Introduction

In contrast to coding (redundancy removal), pattern description implies a considerable loss of information
(irrelevance) and thus in general does not permit unequivocal signal reconstruction. Pattern descriptions
are essentially determined by specific tasks and pattern repertoires. Especially pictorial patterns represent
enormous amounts of information and thus allow for large varieties of descriptions. This manifold,
however, is reduced by quite a pragmatic demand: the invariance of pattern descriptions under geometric
transformations. Although it is intuitively clear that increased invariance causes decreased richness of
description, only few systematic and practical approaches to the principal limits of invariant pattern
description are known. The following considerations are based on the definition of transformation
invariants and thus are independent from both the purpose of descriptions (except for the claim for
invariance itself) and the patterns to be described. Consequently, the resulting descriptions cannot be based
on any kind of prototype detection, e.g., on pattern elements. In fact, they express general but nonetheless
obvious pattern properties; mainly various types of symmetry (cf. Radig and Schlieder 1984), i.e.,
categories outside the reach of template matching techniques, including integral transformations.

Limits of invariant pattern description

The limits of invariant pattern description are given by the invariants of geometric transformations. These
are those properties of pattern functions that remain unaltered under certain transformations; for example:

GROUP_OF TRANSFORMATIONS INVARIANTS
e projective cross-ratio (length double-ratio)
» affine + area ratio, length ratio, parallelism
¢ similarity + angle
* congruence + area, length

Therefore, invariants represent the categories of invariant pattern description. But how can they be dealt
with in practice? — Optimal invariant pattern description, with respect to certain transformations, means to
specify the degree to which invariant properties are present in a pattern. Testing this for a single type of
transformation is easy: The pattern is transformed and, for every value of the transformation parameter,
the distance to the untransformed pattern is determined according to a suitable measure. The resulting
comparison function, by definition is invariant under the applied transformation (inherent invariance). In
general, this does not hold for several types of transformations, e.g., groups. In these cases the
multiple-invariant intersection of the sets of invariants must be determined.
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Generalized auto-correlation function

A mathematical formulation of the aforementioned principle is introduced by the generalized auto-correla-
tion function (ACF) (cf. Gliinder et al. 1984, and Strube 1985).

c(31...3m)=Ji[=\l[b(Ti x)1dx, for b®)=0 (1)

m m
with A1 [...], symbolizing a mathematical operation on m terms; e.g., multiplication: II1 [...I;
1= 1=

and T,=T(3,), indicating geometric transformations, characterized by the v-dimensional vector

3,=(z;.. .ziv)T, and acting on the n-dimensional argument ¥ of a pattern function b(¥);
According to the last section, the extraction of invariant properties from pictorial patterns (n=2) is based on
comparisons between a pattern and its transformed versions (m=2). Furthermore, the following
investigations are confined to multiplicative comparisons, and to the group of similarity transformations
(v=5). Therefore, equation (1) can be written in the following way

Cam@ENSW.0) = [ bxy) - b{[t/s cos(@+y)1+&, [Ga/ssin(@+y)l+n} dxdy, 6)
with r=Vx2+y? and ¢=arctan(y/x); where G =-1leads to reflections at the x-axis.

The thus defined (second order) similarity-ACF contains invariant information about the shape (in the
mathematical sense) of patterns. Invariance can be expected with regard to all similarity transformations;
i.e., to changes of size (s), sense (0), as well as shift (§,n) and rotational (y) position of a pattern.

Similarity-invariant descriptors

The complete similarity-ACF is not invariant at all. However, three subspaces are invariant under the
group of similarity transformations if one gets rid of the constraints imposed by the fixed points of the
rotations, scale changes, and reflections. The most pronounced (primary) descriptors are obtained via
maximum detection with respect to the limiting parameters.

C(s) = rg%x {cim@EMs,y=0",0=+1)}  with 0<s<1, or 1<s<eo
Cyw) = max {cgmEMs=Ly,0=+1)}  with 0° <y <180
C,(0) = é1312.‘)'(, {cin(&M.s=1,y,0)} with =1 and 0° <y <360°

The descriptor C; indicates the maximum degree of size-similarity of a pattern as a function of scale.
Hence, patterns consisting of straight lines that join or intersect at a common point result in Ci=const.
Contrarily, any fraction of a circle line leads to a sudden decrease of this function for s#1. The descriptor
CW reveals the maximum angular bindings of a pattern; thus, a perfect circle is the only pattern with
Cw=const. Patterns of at least one perfect axial symmetry are identified by C;(-1)=C(+1). In all the other
cases the coefficient C4(-1) expresses the maximum degree of glide-reflection symmetry.

Compound descriptors show restricted invariance, for example:
C,(y,0) = Ig%x {cimEM.s=1,y,0)} with 0° <y < 360° (rotation variant)

Cy(s,¥) = max {cg (En,s,y,0=+1)} with 0<s<1 and 0° <y <360°, (sense variant)
&n or O<s<eoo and 0° <y < 180°.
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Each value of all these descriptor functions reflects the maximum degree of pattern binding for the optimal
shift position(s). However, no information is obtained about its relation to values for other positions.
Consequentely, more of the invariant information is revealed, if maximum detection is accompanied by
other, e.g., statistical methods, such as analysis of variance, etc.

Related descriptors

There are no straightforward descriptors invariantly indicating shift congruence of a pattern. Doyle (1962)
showed, however, that such descriptors can be derived from the translational (classical) ACF ¢ (). For
this purpose, pattern b in equation (2) is replaced by its ACF c,, which is a centred and central-symmetric
function. Thus, the shift transformations are obsolete and the ranges of the rotation angles are halved. The
three resulting (secondary) descriptors express inner bindings of the translational ACF, with respect to
size, angle and sense. Although seemingly similar to the primary descriptors, they are of significantly
reduced descriptive power and less obvious, but well-suited to supplement the primary descriptors.
Another quite important approach uses the fixed point function f,, instead of pattern b in equation (2).

£,(xpyp) = ” Coy(XpYps,W) dsdy
The integrand c;," is a binary function which is derived from the similarity-ACF. It contains the 'optimal'
fixed point coordinates (x,yy), i.e., those shift positions that lead to the maxima of descriptor C,. The
resulting descriptors express highly abstract pattern properties, such as compactness, regularity, etc.
Besides this, the fixed point that appears most frequently can serve for a final pattern-coherent description.

Concluding remarks

The generalized second order ACF represents a reasonable basis and a tool for the creation of a family of
invariant pattern descriptors. For the case of similarity-invariance, indications are given for a systematic
approach to the limits of pattern description, as defined by the group-invariants. There are two
fundamentally different strategies to compute the generalized ACF: the 'explicit’ one, where geometric
transformations are actually performed, and the 'implicit' one, which is based on generalized dipole
moments. The examples shown on the next page were computed, following an explicit technique, by
correlating the pattern with its discretely transformed versions. Correlation and geometric transformations
were performed by a new kind of incoherent-optical analog-correlator, maximum detection by digital
evaluation. The implicit computation, based on comparisons between every two points of suitably chosen
pairs of pixels, is advantageous for serial processing (cf. Gliinder and Kramer 1986) but also for the
implementation on special purpose parallel computing networks (Gliinder 1986).

References

Doyle W (1962) Operations useful for similarity-invariant pattern recognition. J] ACM 9:259-267

Gliinder H (1986) Neural computation of inner geometric pattern relations. Biol Cybern 55:239-151

Gliinder H, Kramer T (1986) Description of planar patterns by invariant features — an attempt towards the explanation of
visual pattern recognition. In: Guiho G (ed) Proc of 8th ICPR. IEEE Comp Soc Press, Washington DC, pp 1090-1093

Glunder H, Gerhard A, Platzer H, Hofer-Alfeis J (1984) A geometrical-transformation-invariant pattern recognition
concept incorporating elementary properties of neural circuits. In: Wein M (ed) Proceedings of the 7th International
Conference on Pattern Recognition (ICPR). IEEE Comp Soc Press, Washington DC, pp 1376-1379

Radig B, Schlieder C (1984) RS-automorphisms and symmetrical objects. In: Wein M (ed) Proceedings of the 7th
International Conference on Pattern Recognition (ICPR). IEEE Comp Soc Press, Washington DC, pp 1138-1140

Strube HW (1985) A generalization of correlation functions and the Wiener-Khinchin theorem. Signal Process 8:63-74



87

06- 081 022-

[t

20

R V0 ) 9:0 ) 80

0%

suiayed 1noj Jo 101dLIdSap asuss pue d[Sue ‘puno

..m,aa

=

duro)

L

‘o2
4

‘09

‘o8
i «Qmu

©

@
A

suraned sany) Jo uonounj 10}dUdSIp AILIR[TUIIS-9ZIS

S—




