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Abstract. A systematic approach to geometrically invariant pattern description is proposed. It is based on the definition of 

transformation invariants. The generalized auto-correlation function is introduced as a signal representation from which such 

invariant descriptors can be derived. Descriptors remaining invariant under all similarity transformations are briefly discussed.

Introduction

In contrast to coding (redundancy removal), pattern description implies a considerable loss of information 

(irrelevance). Thus, it does not generally permit of the unequivocal signal reconstruction. Pattern descrip-

tions are essentially determined by specific tasks and pattern repertoires. Especially pictorial patterns com-

monly contain a lot of information, hence they can be described in very many ways. The variety however, 

becomes considerably restricted if the descriptions are to be invariant under geometric transformations. 

Although it is intuitively clear that increased invariance causes decreased richness of description, only few 

systematic and practicable approaches to the principal limits of invariant pattern description are known. 

The following considerations are based on the definition of transformation invariants. They neither depend 

on the purpose of the descriptions (except for the claim for invariance itself), nor on the patterns to be 

described. Consequently, the resulting descriptions are not based on any kind of pattern decomposition or 

prototype detection. In fact, they express inherent but nonetheless obvious pattern properties that turn out 

to be general symmetries (cf. Radig and Schlieder 1984), i.e. they belong to categories typically outside the 

reach of template matching techniques, integral transformations included.

Limits of invariant pattern description

The limits of invariant pattern description are given by the invariants of geometric transformations. They are 

those properties of pattern functions that remain unaltered under defined transformations, for example:

Transformation Group Group Invariants 
 projective   cross-ratio (length double-ratio) 
 affine  + area ratio, length ratio, parallelism 
 similarity  + angle 
 congruence  + area, length

Therefore, invariants represent the categories of invariant pattern description. But how can they be dealt 

with in practice? – Optimum invariant pattern description with respect to geometric transformations means 

to specify the degree to which invariant properties are present in a pattern. This can be easily accomplished 

for a single type of transformation: The pattern is transformed and the distance or likeness to the original is 

determined according to a suitable measure and as a function of the transformation parameters. By defini-

tion, the resulting comparison function is invariant under the applied transformation (inherent invariance). 

In general, this does not hold for composite transformations. The then required group invariants can be 

obtained as multiple-invariant intersections of sets of elementary invariants.
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Generalized auto-correlation function

A mathematical formulation of the aforementioned principle is introduced by the generalized auto-correla-

tion function (ACF) (Glünder et al. 1984, Strube 1985)
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According to the previous section, the invariants of a pictorial pattern (n � 2) result from comparing it to 

its geometrically transformed versions (m � 2). In what follows, the group of similarity transformations 

(� � 5) is considered and product comparisons are applied. Consequently, definition (1) can be written as
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with r x y� �2 2  and  � � � � � � �arctan min sgn( ),y x x� 0 . (Although slightly less general than separate 

scale factors s sx �  and s sy � ��  , more convenient formulations result from s � 0 and � � �1 .) The such 

defined (second order) similarity-ACF contains information about a pattern’s shape (in the mathematical 

sense). The group invariant subset of the descriptors is invariant under changes of size (s), sense (�), and the 

translational (	, 
) and rotational (�) positions of the pattern.

Similarity-invariant descriptors

In general, the similarity-ACF per se is not invariant – but at least three of its subspaces are. They are 

obtained by getting rid of constraints imposed by the fixed points of rotation, scale change, and reflection. 

Pronounced (primary) descriptors result from maximum detection:
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The descriptor Cs indicates a patter’s maximum degree of similarity as a function of scale. Hence, self-

similar patterns, such as straight lines that join or intersect at a common point, result in Cs � const. , whereas 

curved lines lead to a sudden decrease for s � 1 . The descriptor C�  reveals the maximum angular pattern 

bindings. Consequently, perfect circles are the only patterns resulting in C� � const. Patterns showing at 

least one perfect axial symmetry are identified by C C� �( ) ( )� � �1 1  ; otherwise, coefficient C�( )�1  expresses 

their maximum degree of glide-reflection symmetry.

In contrast, compound descriptors show restricted invariance. For example
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    or   1 � � �s  and 0 � �� � is sense variant.



86

Any single value of the descriptor functions reflects the maximum degree of inner pattern binding with 

respect to the optimum translational position(s) but nothing is revealed about its relation to values resulting 

from different positions. Consequently, further invariant information can be obtained, if maximum detection 

is accompanied by other, e.g. statistical methods, such as analysis of variance, etc.

Related descriptors

There are no straightforward similarity-invariant descriptors that indicate a pattern’s translatory congruenc-

es. However, Doyle (1962) showed that related features can be derived from the translational (classic) ACF 

ct( , )	 
 . For this purpose, pattern b x y( , ) in equation (2) is replaced by its ACF ct  which is a centered func-

tion of central symmetry. Thus, translations are irrelevant and the ranges of the rotation angles are halved. 

The three resulting (secondary) descriptors express inner bindings of the translational ACF with respect 

to size, angle and sense. Although seemingly similar to the primary descriptors, they are of significantly 

reduced descriptive power and less obvious, but they nicely supplement the primary descriptors.

For another approach, pattern b x y( , ) in equation (2) is replaced by the fixed point function

f x y c x y s sf f f f f2 2, , , ,� � � � ��� � � �d d  ,

where the binary function �cf 2 is derived from the similarity-ACF, with xf , yf  being the optimum fixed point 

coordinates underlying descriptor C2. The resulting (secondary) descriptors express fairly abstract pattern 

properties, such as compactness and regularity. Finally and as an aside: The most frequently appearing fixed 

point can serve as the center of a pattern-coherent description.

Concluding remarks

The generalized second order ACF was shown to provide a reasonable basis for the extraction of a family 

of invariant pattern descriptors. Furthermore, indications were provided of how to approach the limits of 

similarity-invariant pattern descriptions, as they are defined by the group invariants.

The generalized ACF can be obtained from two procedures: the “explicit” one, with actually performed 

geometric transformations, and the “implicit” one, using generalized dipole moments. The examples shown 

on the next page were computed by correlating the patterns with their discretely transformed versions. Cor-

relations and geometric transformations were performed by a special incoherent-optical analog-correlator, 

maximum detection by digital evaluation. The implicit approach, based on comparisons of values at suit-

ably chosen pairs of image points, is favorable for serial processing (Glünder and Kramer 1986) and for the 

implementation on special purpose parallel computing networks (Glünder 1986).
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Samples of the generalized ACFs cs, c�, and c1 of three line-like patterns

−0°

−30°

−60°

−90°

−120°

−150°

−180°

−210°

−240°

−270°

−300°

−330°

−0°

1.00

0.80

0.70

0.60

0.50

0.35

0.20

0°

30°

60°

90°

120°

150°

180°

0°

30°

60°

90°

120°

150°

180°

c1( , , , )	 
 � �c ss( , , )	 
 c� 	 
 �( , , ) c� 	 
 �( , , )

Examples of descriptor functions Cs and C1
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