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Critical introduction

In the 1950s the need for automatic image data evaluation 
and pattern recognition, mainly for aerial reconnaissance 
purposes, increased considerably. Hence, while looking 
for new ideas, physicists and engineers became interested 
in mechanisms1 involved in visual perception. Thus, one 
branch of the so-called Bionics research was founded. For 
the first time since the era of universal researchers, it was 
attempted to bring such different scientific branches as en-
gineering sciences and technology together officially with 
biology and human sciences. Scientists from the latter group 
expected help from this collaboration in the explanation of 
biological phenomena and for the purpose of modelling 
biological systems (Biological Cybernetics). Today we know 
that the different interests of the two groups did not allow 
a stable interconnection and that, with some exceptions, the 
expected cooperation failed2.

The first and perhaps the most important exception, be-
sides the activities of the forerunners Rashevsky, Wiener, 
Pitts, McCulloch, v. Foerster and others around them, was 
the work of Rosenblatt (1957): a perception theory called 

1 That implies already a mechanistic view!
2 It can be hoped that the present activities of bringing together the 

fields of human and machine vision are successful in the long run 
(e.g., Beck et al. 1983; Braddick and Sleigh 1983)

Perceptron. This approach, at the time unique in its prom-
ises (e.g., an enormous degree of invariance was ascribed 
to this principle), was meant to serve engineers as well 
as biologists. Due to some shortcomings (cf. Minsky and 
Papert 1969) and to some unsuccessful applications the 
concept disappeared – at least temporarily – from the field 
of technical pattern recognition. Another reason for this 
failure was parallel processing, which is indispensable for 
the effectiveness of a Perceptron machine. Special purpose 
computers, however, were not attractive at a time when se-
quentially working general purpose computers entered the 
laboratories. Since the Perceptron concept is based on few 
but fundamental neuroanatomical and neurophysiological 
results (e.g., receptive fields, Hartline 1940; Kuffler 1953; 
Hubel and Wiesel 1959) it is no surprise that it still represents 
a common opinion in visual sciences of how pattern recog-
nition occurs in mammals.

While engineers in the field of pattern recognition no 
longer cared very much about the biological plausibility 
of their algorithms (they tried to fit them to the capabili-
ties of digital computers based on the classical principle of 
v. Neumann (see Fu 1968; Andrews 1972) some physiolo-
gists got acquainted with a well-known method used in the 
field of electrical engineering: the description of signals and 
systems in terms of (spatial) frequency components, and 
signal analysis by means of (spatial) frequency filters (Fou-
rier analysis3). This suggestion for a certain system descrip-
tion4, however, was converted into a functional principle 
that mainly originates from Campbell and Robson (1968). 
Perhaps as a consequence of the fact that this spectral fil-
tering approach to pattern analysis is consistent with the 
Perceptron principle, it became even more accepted.

The lack of succeeding alternatives5 for a functional 
description of biological structures performing two-dimen-
sional pattern recognition can be ascribed to the following 
fact: in most cases it is easy to fit the specific and isolated 
results from neurobiological research to the well established 
and general framework of Perceptron-like concepts6. This 

3 A thorough and modern treatment of the two-dimensional Fourier 
transformation and its application to systems and signals is given by 
Gaskill (1978)

4 Schade (1956) already used the Fourier calculus for the definition of 
the overall bandwidth of linear processing stages in early vision

5 Surely there were some – but perhaps not at the right time in the right 
journal, e.g., Hoffman (1966)

6 Especially if the concept itself influences the direction of further 
research (Taube 1961)
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is especially true for detailed results that are produced 
without regard to their functional importance for the visual 
system. Particularly in the neurophysiological field of vision 
research the systems purpose is often neglected in favour 
of a somewhat purposeless structure: the Perceptron idea 
manifests a paradigm (in the sense originally introduced 
by Kuhn 1970). In a similar fashion most of the methods 
that are developed in the field of machine vision are a con-
sequence of another paradigm: the principle of sequential 
v. Neumann-type computers.

There are logical reasons why the Perceptron concept 
cannot explain some evident performances of biological 
pattern recognition structures and some others only at un-
reasonably high expense. Thus, the time seems ripe for bet-
ter concepts of similar extent, even at the risk of a sudden 
falsification, e.g., by completely revolutionary results from 
the biological side. Since verification in empirical sciences 
is not possible, profound falsification is essential for scien-
tific progress (Popper 1972). In this article the basic idea of 
Perceptrons is explained and its inappropriateness for the 
explanation of visual perception is demonstrated. Next, a 
completely different, “relational”7 approach is introduced, 
which is not yet fully developed but should be discussed. It 
is possible that such processing could be attractive even for 
technical applications. The present activity in proposing and 
building parallel working computers – some of which are 
well suited for the processing of image data (cf. Onoe et al. 
1981) – supports this speculation.

Criteria for the assessment of pattern recognition concepts

This paper is concerned with explaining the importance of 
systems analysis in understanding the capabilities of some 
recognition concepts. Structural plausibilities (computing 
structure, i.e., hardware) and that of their specific mecha-
nisms, as well as the relation between complexity and per-
formance are discussed secondarily. The concepts will be 
investigated with respect to some elementary and obvious 
abilities demonstrated preferably by the human visual sys-
tem. These are essentially those demonstrated in everyday 
life that allow us to perceive what is called the Gestalt of a 
pattern, i.e., characteristic properties such as symmetries, 
congruences, similarities etc. (For an explanation of the 
term “Gestalt” see Wertheimer 1923; Koffka 1935; Metzger 
1975, or the more recent articles about the worth of Ge-
stalt theory in a book edited by Beck 1982.) The degree of 
biological plausibility of processing structures is measured 
solely against some elementary neurobiological facts that 
have long been accepted: parallel processing configura-
tion, neural signal representation as impulse rates, spatially 
and temporally integrating properties of neurons, average 
number of about 104 connections per neuron, layered cor-
tex structure, retinotopic mapping from the receptors to the 
cortical input layer, etc. One reason for this limited choice 

7 The term “relational” is not used in the same sense as in connection 
with syntactical and structural approaches to pattern description, 
as in the works of Barrow and Popplestone (1971), or Shapiro and 
Haralick (1982). Here, the term shall specify a procedure that leads 
to invariant features. These, however, can also be used for syntac-
tical descriptions when applied at a higher processing level.

can be seen in the systems view of this investigation, and 
another is given by the enormous complexity of the “object” 
under investigation in neurosciences, which results in a slow 
and pointilistic consolidation of its understanding.

In order to confine the topic even more we shall deal, 
biologically speaking, with the monocular (cyclopic), foveal 
(about one degree of visual angle), achromatic and supra-
threshold vision without eye movements (but not in the 
sense of stabilized retinal images). Such heavy constraints, 
however, can make it difficult to find acceptable or even true 
explanations and theories. The confinement to the monocu-
lar and achromatic vision is possible if binocular and colour 
vision are assumed as conservative extensions (phylogeny) 
of a basic processing (cf. Livingstone and Hubel 1984). The 
restriction to foveal vision without eye movements is toler-
able, or even plausible, if this type of recognition is seen 
as an underlying process of a sequential pattern analysis 
that involves scanning mechanisms (cf. Leibowitz and Post 
1982). These can consist of comparative eye movements or 
“mental shifts” between points of “focal attention” (as Julesz 
and Bergen 1983 call it). The following investigations con-
cern this local and rapid processing (down to about 50 ms) 
that takes place between the shifts.

Before we proceed to a more detailed and sometimes 
technical discussion about pattern recognition, a comment 
on the biological phenomenon called “receptive field” 
(Hubel and Wiesel 1962) shall be made: primarily it must 
be recognized as a consequence of the applied measur-
ing technique. The fact alone that receptive fields can be 
measured, however, does not suffice for the conclusion that 
they characterize visual pattern processing. One could, for 
example, imagine parallel computing structures in which 
receptive fields can be measured whose purpose or function, 
however, cannot be deduced from these findings. The ques-
tion arises whether receptive fields – at least of the complex 
and hypercomplex type – are of functional relevance for the 
processing of visual information?

Elements of recognizing structures

In this section basic components of pattern recognizing sys-
tems are introduced. The diagram of a general pattern recog-
nition structure (Fig. 1) is used to explain what is commonly 

Fig. 1. General scheme of a pattern recognition system
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understood as pictorial pattern recognition. One should bear 
in mind that this scheme and its describing terms stem from 
engineering sciences. The structure proved useful for tech-
nical purposes, but must be judged critically when used in 
conjunction with biological systems.

The preprocessing stage performs operations such as 
compression and normalization of signal amplitudes, and 
contour extraction (Marr 1982; Hofer and Platzer 1978). It is 
typical for this unit that its output is a “retinotopic” pattern 
representation.

The feature extraction unit shall provide suitable input 
signals for the classifier section. They are either stored dur-
ing the “learning” mode (switch in L-position), or compared 
with the stored data in the “recognition” mode (switch in 
R-position). In order to minimize the effort it is advanta-
geous to use characteristic features instead of whole patterns 
for this purpose. Thus, irrelevant information is removed 
and significant properties of a pattern are expressed by a 
so-called feature vector.

The classifier performs the above-mentioned compari-
son based on these feature vectors. This operation should 
lead to decisions about the membership of patterns to cer-
tain pattern classes. The quality of classification, i.e., the 
ability to distinguish between patterns belonging to differ-
ent classes, strongly depends on the choice of the features. If 
they are known it is possible to specify the performance of 
the so-called optimum classifier (for details see Sebestyen 
1962; Fukunaga 1972). It is not possible, however, to specify 
in a mathematical sense the optimal features for a certain 
recognition task. Hence, for the purpose of working out con-
cepts explaining visual pattern processing, the best suited 
features with respect to the following criteria must be found: 
the recognition task, presented by general biological and 
behavioural theories; the potential processing power of the 
visual system, studied by experimental psychologists and 
psychophysicists; its processing structure and mechanisms, 
investigated in the fields of neuroanatomy and neurophysiol-
ogy.

Invariant recognition in technical and biological systems 

While reading the previous description doubts about the sep-
aration into functional blocks may have arisen. Particularly 
the classifier stage should be critically investigated. Until 
now, technical pattern recognition dealt with problems that 
are characterized by finite, typically small numbers of pat-
tern classes (as in the case of character recognition). Under 
such circumstances there is some hope of finding accept-
ably “separating” features by heuristic search. In the case 
of visual perception, however, the number of classes is not 
limited (if we leave out of consideration the finite extent and 
resolution of the fovea). Another significant difference ex-
ists in the magnitude of classes, in other words, the number 
of representations belonging to a class. Due to their well 
defined tasks technical systems rarely need to be invariant 
against many different forms of pattern presentations. These 
are defined by the type (quality) of transformation that re-
lates the individual pattern to its prototype. Even if this in-
variance should be necessary, its extent is usually limited to 
small deviations (quantity) from a prototype representation. 
For a living creature, however, invariant recognition to the 
utmost extent might be vital for its survival.

There are four fundamental approaches to invariant pat-
tern recognition8:

1. A classifier is used that is tolerant against feature vari-
ations. This can be achieved by storing “blurred” features 
which, in the end, will yield a reduced quality of classifica-
tion. Furthermore, this method does not enable statements 
about the actual variance (quality as well as quantity) be-
tween a pattern and its prototype; although it represents 
important information, especially for biological systems. 
For example, it is a key feature for the specification of the 
meaning of a percept, preferably in a contextual situation. 
Figure 2 shows a simple example in which the letter “H”, as 
a whole, is used as a feature. For the purpose of restricted 
rotational invariant recognition (�45°) a “blurred” feature is 
formed (Fig. 2c shows the binary template). This may lead to 
false classifications, e.g., for the letters shown in Figure 2d.

2. The feature vectors are stored separately for every 
pattern representation. Although this principle allows the 
most detailed statements of classification, it obviously re-
quires a storage capacity that grows inflationary with the 
number of pattern classes (Bremermann 1971): the degree 
of invariance depends on the effort. Figure 3 presents five 
patterns belonging to the class “H”. If these are stored as 
features they will allow very detailed statements of classi-
fication, e.g., prototype (a), inclined by 45° to the right (b), 
broad version (c), small version (d) and slim version (e).

3. The idea may arise to adapt either the presented fea-
ture vectors to the stored ones, i.e., to transform them until

8 The demand for invariance represents the difference between code 
deciphering and real pattern recognition

Fig. 3a–e. A selection of representatives for the pattern class “H”

Fig. 2a–d. Pattern “H” superimposed in three angular positions (a), 
the “blurred” feature for �45° rotation invariant recognition (b), its 
binary template (c), and a selection of three patterns that are supposed 
to be classified as “H” (d)
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the best match is reached, or vice versa (Bremermann 1971; 
Marko 1973). In order to maintain the quality of classifica-
tion these transformations must be confined in their extent. 
However, the criteria for these restrictions are at least pat-
tern dependent. Figure 4 depicts an example to characterize 
the problem.

4. The most convenient approach is the extraction of 
invariant features. Classification based on such features 
presents no principal difficulty, provided they contain suf-
ficient information! The problem, though, is finding a proper 
method for their extraction. As with method 1, additional 
variance information is required. 

Due to the fore-mentioned restrictions the first three 
methods are adequate for technical tasks and actually are 
successfully applied. With respect to the previously made 
claims, however, they appear highly inappropriate for the 
explanation of visual recognition processes. Furthermore, 
Foster and Mason (1979) showed, based on results from 
sophisticated psychophysical experiments, that method 3 is 
unlikely to apply to visual pattern recognition.

Classification, supposing learnt patterns (re-cognition), 
represents just one special performance of biological pattern 
processing. A more general and perhaps basic ability is that 
of understanding and describing unlearnt patterns (Nara-
simhan 1964 recognizes it as the real pattern recognition 
problem). This can be performed by analyzing their struc-
tural composition, and by intra- and inter-modal association. 
Thus, features of biological relevance should also be suited 
for these purposes. The examples in Figure 5 illustrate some 
consequences of this demand. The pattern in Figure 5a may 
be called “H-shaped”, which means a context-free statement 
of analogy (intra-modal association). Obviously, such state-
ments are extremely invariant. The fact that pattern descrip-
tion and understanding do not necessarily require a classifier 
(in the mechanistic sense of Fig. 1) leads to the conclusion 
that these abilities are based on invariant features! This 
means that invariant recognition, achieved by suitable clas-
sifiers (methods 1 to 3), cannot explain these invariant re-
sults from visual processing. In contrast, the pattern at the 
top of Figure 5b is recognized as the letter “H”. This is a 
contextual statement (based on our knowledge of characters 
and writing) which is less abstract and thus less invariant. 

The degree of contextual influence can be estimated from 
the example in Figure 5c.

If we ask for the categories of human visual perception 
(e.g., in the sense of Kant’s philosophy), we must suspect 
them of being invariant properties that are consistent with 
Gestalt theory. In order to formulate functional concepts 
for the explanation of visual pattern recognition processes, 
methods for their computation must be found. This, how-
ever, appears rather difficult: most of the published ap-
proaches deliver only partly invariant features (mostly shift 
invariant) or they lack biological plausibility. Two of the lat-
ter type shall be mentioned because they represent typical 
examples of the transfer of technical methods to biological 
systems without regarding the special needs and constraints 
of organisms. Casasent and Psaltis (1977) use – for technical 
purposes – a combination of Mellin and Fourier transforma-
tions to attain a shift, size and rotation invariant “pattern 
representation”. Since then, several scientists proposed this 
method as a solution of the invariance problem in visual 
pattern recognition (Schwartz 1984 who presents an exten-
sive survey; Reitboeck and Altmann 1984). A representa-
tion showing the same invariances can also be obtained by 
following a suggestion of Gerrissen (1982, 1984) that was 
investigated by Kröse (1985). It is based on a pattern’s auto 
correlation function given in polar coordinates with a loga-
rithmic radial coordinate. The auto correlation function of 
this intermediate representation has the desired properties. 
Besides the problem of their computation within the visual 
system (especially the mapping of the important foveal field 

Fig. 4. Invariant recognition by a transformational approach: a pattern 
is made to fit stored features. Without restrictions this may lead to 
false classifications
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of view) it remains unclear why these representations are 
helpful for pattern descriptions in the sense of Gestalt psy-
chology. Substantially, these features offer only one biologi-
cally relevant property: a high degree of invariance.

Perceptron-like concepts

Pattern recognition following the Perceptron approach 
(Rosenblatt 1962) corresponds well to the concept of a hi-
erarchy of receptive fields, which is widely accepted in the 
visual sciences. It is essentially a kind of template matching, 
i.e., the stored features are the patterns themselves, or more 
precisely, parts of them. The disadvantages of such features 
were treated in the last section.

Perceptrons are usually described as systems of intercon-
nected processing layers each containing a set of computing 
units (Fig. 6)9. The input pattern is presented to so-called 
sensory units (S-units) in layer I. This pattern representation 
is converted into an activity configuration in layer II accord-
ing to a fixed rule � describing the connections between the 
S- and the A-units. The original Perceptron uses a random 
scheme �. The A-units in layer II perform a threshold opera-
tion on the sum of their input signals (nonlinearity). These 
units become active if the threshold is exceeded. The signal 
transmission between layers II and III is similar to the one 
between layers I and II, except that rule � can be modified: 
each interconnection can be altered individually thus influ-
encing the signal transmission to the R-units (weighting). For 
a given (“learnt”) scheme � active R-units indicate decisions 
for particular pattern classes. The computing mechanism of 
these units is the same as that of the A-units. Figure 6 shows 
a basic three-layer Perceptron. There exist, however, more 
elaborate forms, consisting of several associator-layers that 
serve for a nonlinear combination of signals. This can result 
in features that allow better classification.

The input signal of an A-unit can be described as the sum 
of the products between each signal value (e.g., the intensity 
of a discrete image point) and the weight of its transmitting 
connection. Therefore, a set of weighted connections con-
stitutes a spatial weighting function that acts as a template. 
The mathematical expression for such input signals is the 
cross correlation coefficient ci. It is a measure for the match 
of a pattern p x y( , ) and a template t x yi( , ). (The subscript i 
indicates the shape of the template.)

c p x y t x y x yi i
S

� ��� ( , ) ( , ) d d  (S: area of layer I)

According to Figure 1 an active A-unit stands for the pres-
ence of one particular feature of a pattern, e.g., a line ele-
ment at a certain location with a specific orientation. Now, 
in order to become independent of the particular location 
of such a feature detector, it appears logical to apply it at 
every position within the input layer. The resulting cross 
correlation function c x yi( , )� �  contains all correlation coef-
ficients. They are represented as a function of the relative

9 An excellent introduction to the function and structure of Percep-
trons together with some simple examples demonstrating the per-
formance of this concept is given by Singh (1966)

translational positions �x  and �y of the template type i, with 
respect to the origin of the pattern function.

c x y p x y t x x y y x yi i
S

( , ) ( , ) ( , )� � � �� � � ��� d d

The corresponding processing structure is called homoge-
neous or space invariant. It allows a much better theoretical 
treatment of Perceptrons than the originally proposed ran-
dom scheme �, without introducing essential restrictions 
(Marko and Giebel 1970; Marko 1974; Platzer 1975; Fuku-
shima and Miyake 1982). Although the processing proper-
ties do not vary within the layer, the location of the result 
still depends on the position of the stimulus. Therefore, 
the features are not shift invariant. As a consequence, any 
subsequent processing must also be performed by space in-
variant structures. This would not be necessary if invariant 
features were used.

The second stage of the Perceptron in Figure 6 can be 
understood as a classifier. During the phase of “learning”, 
the weights of the network � are altered until each R-unit 
responds exclusively to patterns of one class. It is beyond 
the scope of this article to answer the questions whether it is 
possible to reach this state and which “learning strategies” 
are most promising for this purpose. Nevertheless, assuming 
a stable state is achieved, then the couplings between A- and 
R-units can, again, be interpreted as a set of templates.

It follows that the Perceptron concept permits only tem-
plate matching operations. In spite of that the first stage, in 
which the features are determined and thus must be recog-
nized as the bottleneck of the whole system, offers an often 
cited but somewhat trivial possibility of gaining invariant 
features (e.g., Fukushima and Miyake 1982): each type of 
template must be applied to the input in any desired geo-
metrically transformed configuration: shifted (already in-
troduced for the space invariant processing), rotated, scaled, 
reflected, etc. The resulting parallel systems constitute a 
transformation invariant processor. In order now to obtain 
invariant features, all correlation coefficients stemming 
from the same type of template must be combined in a non-
linear manner. In the case of space invariant processing, the 
corresponding shift invariant features are attained by spa-
tially integrating the thresholded cross correlation functions. 
Obviously, these features are mere integral values, one for 
each set of equally shaped templates. They allow, at best, the 
counting of the corresponding shape elements contained in a 
pattern, but no statements about their positions with respect 
to each other. Such extreme disproportion between the effort 
(number of templates) and the information content of the 
features (it is not at all sufficient for the characterization of 
patterns) is rather unlikely for biological systems.

It can be concluded from the above discussion that 
there is no formation of useful invariant features within a 
Perceptron. Therefore, the postulated invariance of recogni-
tion must be achieved by other means. Independent of the 
invariance of the features, invariant classification can be 
attained in the second stage using either of the following 
mechanisms:

1. The network � permits the “learning” of blurred tem-
plates.

2. It is possible to “learn” separate templates for every 
representation of a pattern or, more exact, of its feature vec-
tor, provided there are sufficient interconnections.
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Both methods were treated in the previous section 
(methods 1 and 2) and were found to be unsuited for the 
explanation of visual recognition capabilities.

At this point a general remark on template-matching 
cross correlations should be made: because the correlation 
coefficients are evaluated by threshold operations, i.e., by 
decisions about the degree of match, it is indispensable 
to prevent a pattern of high intensity from surpassing the 
threshold of an inadequate template (intensity versus shape 
“cross-talk”). A common remedy against this effect is the 
normalization of the correlation coefficient to the integral 
pattern intensity (mathematically a division). Although it is 
not impossible that multiplications and divisions with varia-
bles could be carried out in neural circuits, it seems unlikely 
when considering the required speed and accuracy10.

Neural pattern processing according to the Perceptron 
principle can be imagined as follows: the retinal pattern or 
its preprocessed retinotopic representation at the input layer 
of the cortex is linearly transmitted to the next layer by syn-
aptic connections to “A-type neurons”. The fixed weighting 
is achieved by the properties of these synaptic transmissions. 
The integration and threshold operations are performed by 
the neurons. Their output signals, i.e., their own activities, 
are subsequently processed in a corresponding manner, fol-
lowing the principle of convergence, until the “R-layer” is 
reached. It consists of “grandmother-type” neurons. These 
neurons, and those of possible layers in between, show some 
degree of plasticity in their synaptic input transmission. 
This variability for the purpose of learning is similar to 
the synaptic mechanisms proposed by Hebb (1949). It can 
be stated that, though the Perceptron structure corresponds 
well to the concept of a hierarchy of receptive fields (simple, 
complex, hypercomplex, etc.) the corresponding processing 
principle does little to explain the perceptive power of the 
visual system.

Pattern recognition and spatial frequency

After this rather cursory treatment it should be possible to 
understand why it is obvious to describe such Perceptron-
like systems, at least partially, in terms of spatial frequen-
cies: sinusoidal functions are eigenfunctions of linear space 
invariant systems. Their processing by such systems results 
merely in altered amplitudes and phases, i.e., they remain 
sinusoidal functions. The characterization of a linear system 
by its attenuation and phase lag, both as a function of spatial 
frequency, is sometimes advantageous (cf. Schade 1956). 
The expansion of pictorial signals into sinusoidal functions 
proves useful for certain technical tasks, e.g., texture analysis

10 Neural signals are coded as impulse rates (Poisson process) and thus 
are quite noisy. It follows, that for a certain computational accuracy 
(typically a few percent) the required integration time depends on 
the impulse rate which is, however, limited to less than 1000 imp�s. 
The processing time per elementary operation, e.g., normalization, 
is presumably not much longer than 10 ms. Therefore, logarithmic 
signal conversions and especially back-conversions for the purpose 
of multiplying, would require a lot of parallel processors for the 
computation of each product, if the signal to noise ratio and the sig-
nal dynamic is to be maintained. In order to reduce the effort and to 
avoid conversion losses, other operations must be considered (e.g., 
Barnea and Silverman 1972).

(Lendaris and Stanley 1970; Lukes 1977; Platzer and Glün-
der 1979; and others), image transmission and coding (e.g., 
Pratt 1979). It is rather obscure, however, why this math-
ematical method became such a standard functional concept 
in visual sciences. Specific linear space invariant systems, 
namely frequency filters or sets of these, can perform a 
spatial frequency analysis on signals. Speaking in terms of 
Perceptron systems, the appropriate templates for this pur-
pose are bipolar sinusoidal gratings of different frequency, 
orientation, and phase (frequency analysis via correlation). 
The cross correlation coefficients, from extended gratings, 
are ideal measures for a signal description in the frequency 
domain (Fourier coefficients). Depending on the spatial ex-
tent of these templates (window), their retinal distribution, 
and the subsequently applied grouping mechanisms, either a 
global or local frequency description of a pattern can result 
(Fourier features). While the first is no longer considered 
seriously in visual sciences, the latter is quite popular in the 
fields of automatic image analysis (Platzer 1976; Jacobson 
and Wechsler 1982; Glünder and Bamler 1983) and vision 
research (Glezer and Cooperman 1977; Daugman 1984; and 
others). The computation of cross correlation functions us-
ing spatially restricted gratings is essentially the same as the 
frequency filtering of a pattern with filters of bandwidths 
(frequency channels) that are inversely proportional to the 
extent of the spatial window functions (for details see Gaskill 
1978). Thus, local or global “frequency excerpts”, i.e., band-
pass filtered versions of a pattern can be calculated11. These 
may be useful for some sort of preprocessing (Marr 1982).

Frequency analysis – local or global – as a serious func-
tional concept in vision is doubtful: neither the space invari-
ance, to the required extent, of the processing (e.g., between 
neural layers) nor its linearity for high contrast patterns12 are 
physiologically and psychophysically evident. Furthermore, 
it is not obvious why Fourier features should lead to bet-
ter suited pattern descriptions than others. If they actually 
play an essential functional role in vision, their relevance, 
e.g., with respect to the findings of Gestalt psychology, and 
the subsequent processing mechanisms must be explained. 
In conclusion, a speculation on the reasons that led to the 
popularity of Fourier features is presented: if a system is 
linear, or can be approximated as linear, it can be described 
by its transmission properties of sinusoidal functions (see 
above). Since the visual system was suspected to be linear it 
was tested with – mostly – sinusoidal gratings. A prominent 
finding was that the system is quite sensitive to the spe-
cific periodicities of such patterns. It was then argued: the 
system is able to distinguish patterns of different periodic 
structure thus it performs frequency analysis. This conclu-
sion, however, is not valid because the discrimination of

11 Gaussian windows are plausible from a signal theoretical point of 
view. The corresponding feature detectors – called 2D Gabor func-
tions – resemble certain receptive field profiles. These profiles cor-
respond well to those “Gabor patterns” that yield best detection in 
psychophysical experiments (cf. Caelli and Moraglia 1985). They 
consist, however, of only two or three cycles per Gaussian half-
width. Thus, it can be suspected that their spectral relevance for the 
function of the visual processing is not very high.

12 Most psychophysical investigations are performed using low con-
trast patterns (mostly gratings) for which nearly every nonlinear sys-
tem appears to be linear
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pattern periodicities can also be achieved by other tech-
niques. An example is introduced in the next section.

Relational concepts

“The information for the constant dimension of an object is 
normally carried by invariant relations in an optic array”

J. J. Gibson (1966)

This quotation typifies a common opinion among well 
known Gestaltists and expresses the underlying principle of 
the relational concept13. Descriptions of inner pattern rela-
tions can hardly be obtained by comparing a pattern with 
fixed templates but rather by comparing it, or parts of it, 
with itself. A mathematical operation that performs this is 
the auto correlation function c x ya( , )� � .

c x y p x y p x x y y x ya
S

( , ) ( , ) ( , )� � � �� � � ��� d d

This function characterizes a pattern by its inner coher-
ence with respect to rigid translations (shift congruence). It 
indicates pattern periodicities in a more general way than 
Fourier descriptions do. Figure 7 illustrates this statement. 
It shows two patterns, each composed of three identical 
squares that are diagonally lined up. The pattern in Fig-
ure 7a leads to a distinct percept of a threefold discontinu-
ity whereas the pattern in Figure 7b appears significantly 
more continuous. (This effect is best observed for foveal 
presentation!) The corresponding auto correlation functions 
(thresholded) clearly reflect these properties (Figs. 7c, d). For 
convenience, the central parts of the Fourier power spectra 
of the original patterns are displayed in the Figure 7e, f. Al-
though the power spectra contain the same information as 
the (unthresholded) auto correlation functions, they do not 
represent the mentioned properties as clearly. Rather, they 
remain hidden in the spectral fine structure while the infor-
mation about the orientation of the squares dominates these 
transforms. Both pattern representations are shift invariant: 
because the auto correlation function depends on the rela-
tive translations �x  and �y it is independent of the pattern’s 
absolute position. The power spectrum (loss of phase) is the 
Fourier transform of the auto correlation function and shift 
invariant as well.

However important information about shift symmetry 
may be for the description of a pattern, this alone does not 
suffice. Thus, equally significant properties such as angle 
and size relations, and axial symmetries must also be con-
sidered as features. They can be evaluated analogously to 
the auto correlation function by the computation of “gener-
alized auto comparison functions”.

Figure 8 shows a simplified diagram of a relational pro-
cessor that extracts such features. It was introduced by mem-
bers of the image sciences and pattern recognition group 
at the Institut für Nachrichtentechnik (Glünder et al. 1984). 
In order to increase the significance of these correlation re-
sults, line-like input patterns, not necessarily binary ones,

13 Another statement of this kind is found in the introduction to Rosen-
blatt’s book but without any conceptual consequence for the subse-
quent 565 pages

are presumed (see Lowenthal and Belvaux 1967). They can 
be provided by a suitable preprocessing stage. The transfor-
mation unit � produces geometrically transformed versions 
of the input pattern which are compared with the original, 
untransformed pattern. Contrary to the Perceptron and its 
fixed set of templates, here fixed transformation rules are 
applied. Of primary interest are the following geometric 
transformations: rigid translations, rotations, changes in 
scale, reflections and combinations of all four. (Temporal 
changes of a pattern, such as motion, deformation, etc. can 
be revealed by its comparison with delayed versions.) The 
comparator circuit C is defined by its mathematical opera-
tion: the product that is used in the case of classical correla-
tion, the squared difference, and the absolute value of the 
difference can serve for this purpose. The latter is favoured 
because of its easy “neural implementation” requiring only 
elementary properties of neurons: excitation, inhibition, 
and summation (Rashevsky 1960; Glünder et al. 1984). The 
spatially integrated comparison results (comparison coeffi-
cient d� ) can now be represented as functions of their trans-
formation variables d( )� . They constitute relational feature 
functions that indicate inner pattern relations.

d p x y p x y x y
S

� �� ��� ( , ) ( , ){ } d d

Compared to the product, the difference measure has the 
additional advantage that the best match is indicated by 
a zero output independent from the pattern intensity. No 
match results in a coefficient of twice the spatial integral 
value of the input pattern. Thus, there is, in general, no need 
for normalization.

Next, the invariance properties of relational feature func-
tions shall be investigated. Their evaluation, as measures of 
similarity between the input pattern and its transformed ver-
sions, results in a general invariance property: a relational 
feature function is always invariant with respect to its un-
derlying transformation. Unfortunately, the angle and size 
features, d x yf f( , , )	  and d m x yf f( , , ), are bound to the fixed 
points ( , )x yf f  of their transformations (centres of rotation 
or zoom) and thus they are shift variant. This dependency 
can be eliminated by considering only those fixed points 
that result in best matches for each value of the transforma-
tion parameters 	 (angle)14 or m (scale factor) respectively. 
Both feature functions ˆ( )d 	  and ˆ( )d m  are now shift, rota-
tion, scale and reflection invariant. They express rotational 
symmetries and geometric similarities respectively. It is 
noteworthy that the number and positions – absolute and 
relative – of the optimal fixed points are powerful features 
as well. In order to achieve useful results from scale trans-
formations the locally energy-preserving scaling must be 
applied. The effect of the scale dependent integral intensity 
on the comparison coefficient can be easily compensated 
for. The variance problem, associated with the calculation 
of the axial symmetry feature, can be solved similarly: the 
same degree of invariance can be reached if the position and 
orientation of the reflection axes are eliminated.

14 A similar procedure is used by Hsu et al. (1982) to find a suitable 
centre for the expansion of a pattern into circular harmonic func-
tions
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Compared to one-dimensional feature functions, com-
bination of these offer far more descriptive power, without 
restricting the invariance. The feature ˆ( , )d m	 , for example, 
expresses size relationships between pattern elements that 
differ in their orientations and vice versa.

Finally the peculiarity of the translational feature func-
tion d x y( , )� �  is pointed out. This seemingly substantial 
feature (Fig. 7) turns out to be merely shift invariant. This is 
a consequence of its reference to a coordinate system (ori-

entation variance) and to the graduation of this system (size 
variance). Suggestions exist for derived one-dimensional 
features that are either scale or rotation invariant (e.g., the 
chord functions introduced by Moore and Parker 1974). A 
desirable feature, however, that indicates the translational 
distance between similar pattern elements (rotation invari-
ance) with respect to their dimensions (size invariance) could 
not yet be found. Results from psychophysical experiments 
with textures (Julesz and Bergen 1983) revealed that under 
certain conditions the translational relationship between 
pattern elements is in fact ignored. One of these conditions 
is the rotationally randomized presentation of the texture 
elements which demands for the full rotational invariance 
of the observer. Although texture perception may be based 
on totally different mechanisms, these findings give rise to 
the conjecture that a translational feature, perhaps due to its 
restricted invariance property, is not involved in this task.

The simple pattern examples in Figure 9 provide an im-
pression of the nature and meaning of these relational fea-
tures. The patterns depicted in Figures 9a and 9b differ in 
their scale features: using the above mentioned compensa-
tion for the scale dependent intensity, the former pattern will 
result in ˆ( )d m � 0, whereas the latter is zero only for m � 1 
and increases for smaller and larger values. Thus, one aspect 
in which these patterns differ is revealed: the joining and 
the intersection of line elements. The same holds true for 
the patterns in Figures 9c and 9d. These, however, have also 

Fig. 7a-f. Discontinuity (a) and continuity (b) in perception that are clearly reflected by the auto correlation functions (c, d) but are hidden in the 
fine structure of the power spectra (e, f)
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Fig. 8. Scheme of a relational pattern recognition concept
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a different rotational symmetry, indicated by ˆ( )d 	 : while 
the circle leads to ˆ( )d 	 � 0, the pattern in Figure 9c is char-
acterized by zeros for multiples of 120° with local minima 
for multiples of 60°. Obviously the patterns in Figures 9a, b 
have angle features with zeros for multiples of 90°. Hence, 
a difference from the pattern of Figure 9c is indicated, and 
another is given by the number of symmetry axes: three for 
the latter and four for the former ones. The pattern in Fig-
ure 9e delivers the same features as the cross of Figure 9a 
but differs from the one shown in Figure 9f in its rotational 
and scale feature.

Relational features can even reveal rules of composition 
for more complex patterns, e.g., of those shown in Figures 9g 
and 9h. The former is nicely described by the minima of 
ˆ( )d m  that indicate the relative sizes of the three circles (their 
relative positions are contained in the fixed point feature). A 
dominant aspect of the latter is indicated by the combined 
feature ˆ( , )d m	  that becomes a minimum for 	 � 45° and 
m � 2. This feature function also permits the estimation 
of linelength-ratios, e.g., of the sides of a triangle. The axial 
symmetry feature provides the number of symmetry axes, 
e.g., one for the pattern of Figure 9i and four for the one in 
Figure 9k. It also delivers a measure indicating the highest 
degree of axial symmetry of a pattern that is not really axi-
symmetric, such as the one in Figure 9h.

The quantitative element of these features is quite use-
ful, but what is surprising is their relevance with respect to 
Gestalt psychology: certain aspects of a pattern’s “figural 
goodness” or “Prägnanz” are reflected by the symmetry 
and fixed point features. Furthermore, the examples just 
discussed show that the characterization of a pattern is, 
to a great extent, possible without using the shift feature. 
Apart from their utility for pattern descriptions, invariant 
relational features are also well suited for classification and 
association purposes. Since they are functions and not single 

values, higher relational features can be extracted, i.e., rela-
tions of relations.

It is quite feasible locally to extract relational features 
by applying many spatially restricted comparisons to a 
pattern. The resulting local relational features can again 
be compared on a higher processing level, thus forming a 
relational hierarchy (cf. Platzer 1976; Platzer and Glünder 
1979). Related to this is an approach suggested by Palmer 
(1982, 1983). Although he gives no detailed mathematical 
description, it can be formulated as follows: cross correla-
tions with a variety of template-like windows of different 
shapes are locally performed all over the input plane. The 
transformations are implicitly realized by spatially com-
paring the results of these local correlations. Contrary to 
the Perceptron, where the correlation coefficients of a set 
of equally shaped templates at different retinal locations 
are combined (integrating system), here all coefficients are 
compared with each other, independent of their belonging 
to such a set (differentiating system). Thus, by knowing the 
shape and position of each template, as well as all the results 
from these comparisons, it is possible to compute invariant 
features that are quite similar or even equal to those gained 
by explicit transformations. The choice of the templates, 
however, is crucial since they limit the performance of the 
following processing. For the purpose of shift invariance the 
locations of the templates must be eliminated. One way this 
can be done is by spatially integrating all those comparison 
results that have equal relational properties. Thus, this ap-
proach is also based on the principle defined by the question: 
which geometric transformations convert parts of a pattern 
into others? From a systems theoretical point of view, it is 
therefore essentially equivalent to the relational approach 
described before.

These results may lead to the following conjecture: in 
non-trivial recognition systems, i.e., systems in which the 
invariance of features is not traded for a significant loss of 
their information content, invariance can be achieved with 
respect to those transformations that are implemented ex-
plicitly or implicitly (Palmer) in the processing system.

In the final section comments are made concerning the 
biological plausibility of relational concepts. The geometri-
cal transformations can be computed in parallel by using 
suitable interconnection schemes between “neural layers”. 
With such point-to-point “wiring” the energy condition for 
the scale transformation is directly met.

A retinotopic pattern representation in a neural layer 
is geometrically transformed in parallel (with respect to 
all required qualities and quantities) by being transmitted 
to further layers in which they are compared with the un-
transformed representation. The number of long-reaching 
interconnections, is reduced if local operations are assumed. 
Palmer’s approach requires that the transforming intercon-
nection scheme be replaced by a “wiring” that compares the 
results of all template correlations with each other. In that 
case, the preceding structure resembles the first stage of a 
Perceptron which is assumed to be at least orientationally 
selective. This fact in particular corresponds well with the 
common neuroanatomical and neurophysiological findings 
(cortical columns). Relational structures afford large num-
bers of interconnections per computing unit and they pro-
vide a rapid computation due to the small number of layers 
that are involved in feature extraction.

Fig. 9a–k. Examples of perceptual similarities and dissimilarities that 
are partly reflected by relational features
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As mentioned earlier, variance information is indis-
pensable for biological recognition systems. Thus, the high 
invariance of such relational features must be confined ac-
cording to a given context. For example, the rotation invari-
ance must be limited to distinguish between the letters “d” 
and “p” and the numbers “6” and “9”, when presented in the 
context of “writing”. Information about the absolute posi-
tion of a pattern, for example, is given by the optimal fixed 
point coordinates. In a hierarchically organized system the 
specific presentation of a pattern can be easily determined, 
since the localization increases as the processing level de-
creases.

For both relational approaches the amount of computa-
tion is high but still economical, since the processing struc-
ture is, contrary to the Perceptron, not specific for certain 
pattern classes: while, simply speaking, the number of tem-
plates for a Perceptron is given by the number of pattern 
classes times the average number of tolerable pattern vari-
ances per class, the latter alone defines the required number 
of transformation rules for the relational concept. As men-
tioned, a hierarchical evaluation of relational features can 
be achieved by the repeated application of equal or similar 
processing structures, e.g., comparators. Hence, features of 
a lower processing level can be recognized as “patterns” 
for the next level. This hierarchy is significantly different 
from that of Perceptrons: there, the meaning of a feature 
becomes increasingly specific according to the processing 
level – finally resulting in statements commonly associated 
with “grandmother neurons” – here, however, the degree of 
abstraction and invariance of the features increases.

The conjecture that the visual system uses information 
about inner relations of a pictorial representation in order to 
become invariant against certain changes of this represen-
tation is not a new one. The “retinex” theory of colour vision 
proposed by Land (1959; 1983) is a prominent example: in-
dependence of colour changes due to illumination effects is 
achieved by defining an object’s colour through its relations 
to the colours of surrounding objects. Colour constancy 
is thereby explained, and one can suspect relational shape 
processing to be a key to other constancy phenomena of 
visual perception.

In this paper it was attempted to explain the important 
role that invariant, Gestalt-related features play in human 
vision. It was shown that, consequently, template-matching 
concepts are of little value for the explanation of visual per-
ception. Furthermore, mathematically elegant approaches to 
invariant recognition were criticized because of their infe-
rior biological plausibility. An alternative concept was intro-
duced that avoids some of these shortcomings: the extracted 
features express neither abstract mathematical quantities, 
e.g., Fourier coefficients, nor pure numerical facts, e.g., 
numbers of pattern elements, but qualitative properties such 
as symmetries and similarities. Their evaluation requires 
spatial comparisons that can be explained by elementary 
neural processes. Contrary to related approaches, it was 
possible mathematically to formulate the feature extraction 
process. Thus, it can be tested and perhaps falsified.
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