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ABSTRACT

A pattern description is proposed which is based on
geometric relations between pattern elements. Well-known
preprocessing techniques are used for a decomposition of the
pattern into line elements of different orientations and widths.
Suitably chosen relational parameters between these pattern-
excerpts lead to a pattern representation from which invariant
features are extracted. The way they are evaluated agrees with
processes in neural circuits of the visual system. Their nature
corresponds to that determined and postulated by perceptual
psychologists of the Gestalt school. They indicate global shape
properties such as symmetries, congruences, similarities, etc.
In the presented study emphasis is put on the extraction of
relational parameters and invariant features.

INTRODUCTION

In previous articles we showed that global comparisons
between a planar pattern and geometrically transformed versions
of it, which can be mathematically formulated by so called
generalized auto comparison operations, result in highly
invariant features!:2. In other words, we proposed a concept
considering as features answers to the following question:
"Which transformations convert parts of a pattern into others"?
This transformational method, which describes patterns by their
invariant elements together with the corresponding
transformations, results in pattern characterizations that agree
well with those proposed by Gestalt psychologists3. A parallel
computing structure, however, explicitly performing the
required geometric transformations is not quite plausible within
neural circuits. Therefore, following a suggestion of Palmer®>
we no longer carried out the transformations explicitly but
evaluated geometric relations between elements of a pattern. To
each of these relations, or generalized dipole moments, defined
by a pair of elements we can assign a (implicit) transformation®.

Obviously all global comparisons between a pattern and all
of its explicitly transformed and deformed versions that can be
calculated within a given pattern format can also be achieved by
comparisons between appropriately chosen pixels of the original
pattern, i.e., without actually performing geometric
transformations. The interpretation, however, of the resulting
pattern representation especially for complicated deformations is
difficult and the question may arise whether the great variety of
possible transformations must always be considered. Depending
on the desired accuracy of a pattern description and the claims
made for its invariance simplifications and data reduction can be
applied. In practice, the group of affine transformations is a
good approximation for the analysis of parallel projections of
three-dimensional rigid objects’. For the treatment of rigid and
planar patterns in planes parallel to the sensor array (retina) it is
even sufficient to consider the subgroup of similarity
transformations. On the other hand, comparisons between
pattern elements (primitives) may replace those between pixels
and thus a pattern must be decomposed.

CH2342-4/86/0000/1090$01.00 © 1986 IEEE

1090

This paper's goal is not to present examples of features
gained from complex input patterns (this would require an
enormous computation capacity on a serially working
v.Neumann-type machine) but to explain useful processing
steps for the extraction of "relational features" via the dipole
moment approach and to exemplify its equivalence with the
recently introduced explicit transformational approach. The quite
moderate computer simulations at the end of this article serve for
this purpose. They can, however, by no means express the
potential processing power of a suitable (neural) parallel
processor.

PATTERN DECOMPOSITION

There is no great choice of suitable pattern segmentations if

we consider the following claims and boundary conditions:
(1) The desired features shall be invariant at least under the
similarity transformations of a pattern, i.e., rigid
translations, rotations, changes in scale, and reflections
(sense).
(ii) The primitives should support the computation of the
desired implicit transformations.
(iii) Their variety (shape) should be as small as possible to
minimize the computational effort.
(iv) The elements must be simple in order to facilitate their
extraction and characterization.
(v) For the purpose of concept formation about visual pattern
recognition the decomposition process must be in
accordance with fundamental neurobiological findings.
The relevance of point (i) for the segmentation process consists
in a claim for the extraction mechanisms. They must guarantee
an invariant evaluation of the primitives, i.e., the whole pattern
must be processed no matter how it was presented to the input
plane. Since invariant features are computed from these
primitives they themselves need not be invariant.

Primitives that allow a high flexibility for the evaluation of
features and that meet the above conditions are straight line
elements of different orientations and widths. Since they
represent merely the data base for the proposed feature
generation we will not discuss methods for their extraction in
detail. A simple and well-known method was used for the
demonstrations in this article: A pattern's two-dimensional
correlation with laterally bandpass-filtered straight lines or bars
of suitable length. In visual sciences such functions are known
as orientation selective receptive fields. A set of such correlation
kernels (processing channels) contains them in different
orientations and sizes. According to the above stated claims we
need a set containing functions of all possible orientations and,
within limits, widths. In practical systems, due to their limited
overall bandwidth in conjunction with suitably applied
maximum selection mechanisms, a moderate number of
correlation kernels will suffice. Since we confine the present
study to shape analysis we do not treat the problems arising in
connection with the preservation of intensity information within
such a preprocessor. A more elaborate preprocessing that leads



to a biologically more plausible data base, and represents a
further development of the agproaches of Marr and Hildreth® as
well as Watt and Morgan?, is introduced in a forthcoming

paper®.
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Fig.1 Pattern excerpts of different orientations and sizes represent the data
base from which the relational pattern representation is constructed
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For the explanation of the processing principle we start
from a data base which is structured like that sketched in Fig.1
and from which a relational pattern representation can be
constructed. We assume an unequivocal assignment of line
elements to channels of different widths and equal orientations
but not to channels of different orientation. The excerpts’
sampling grids are chosen according to the size of the applied
correlation kernels (sampling theorem).

RELATIONAL PATTERN REPRESENTATION

We introduce a pattern representation that gives a shift
invariant description of a pattern. It consists of geometric
relations between all n active pixels (indicating line elements) of
the data base.
|
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Fig.2 Definition of dipole parameters characterizing pairs of elements in
the data base

According to Fig.2 every pair of pixels (P, P) is characterized

by the following five dipole parameters:

(i) the dipole length p (in multiple units of the sampling grid
P, is taken from),

P=V§2+'ﬂ§; with <‘,=xj-xi and M=y, -y;
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(ii) the angle relations @, and @, between the absolute direction
¢, of the dipole and the exécrpt directions ; and Xjs

mod(¢;, 180°) with ¢,=¢_ -%, for p=0

= { not defined (X) for p =0
{ mod(¢;, 180°)  with ¢;=¢,-x; for p=0
kK mod(9,, 180°)  with ¢,=%-% for p=0

with @ = arctan(n/§)

(1ii) the characteristic number u,

+1
X
-1

(The characteristic number, though useful for digital
computations, is not obligatory and can be avoided by
slightly altered definitions of the angles ¢, and (pj.)

for 0<¢;<180°
if ¢; is not 'defined Pp=0
for 180° < ¢; < 360°

u =

(iv) the angle difference v,
V=X;- Xj

(v) the scale factor s by which the excerpt resolutions (my, mj)
are related,

S = mi/mj.

We arrange sets of parameters p;; in an n X n -array: Pixels
stemming from the same excerpt of the data base are arranged in
groups E, |, thereby defining submatrices M,;,. In this array
each row lc(iesc:nbes the whole pattern seen from a certain pixel
P.. Figure 3 shows this representation for the pattern of Fig.1,
howevcr only for excerpts with m=1 and therefore s=1. (Thc
designation of pixels by letters is arbitrary.)
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Fig.3 Relational representation
moments

of a pattern as array of sets of dipole

Since the code is based on spatial relations and the
construction of the array must obey a once defined rule the
representation is shift invariant, though it is by no means
rotation or scale invariant. For rotations and scalings the



submatrices are permuted. The extraction of features, invariant
under these transformations, is explained in the next section.

INVARIANT FEATURES

A relational analysis of the pattern representation leads to
invariant geometric features. It is based on the search for
coincidences of dipole parameters within the array. We start
with the extraction of simple features that show some
invariancies due to their numerical character, such as the number
of line joints, intersections and corners!%!!, They result from
elementary spatial or semantic coincidences and their quality
appears to be similar to that of Julesz' "textons", i.e., to
conspicuous pattern properties in preattentive vision!2,

Numerical and line features

For the extraction of such simple features it is useful to
group line elements within each excerpt in order to form straight
lines of constant line width. Only submatrices M, with k=1
must be considered, i.e., y=0°and s=1. Line elements with
©;=9;=0° are "in line" and can be assumed to be parts of a
straigjht line. Whether this line is continuous or broken depends
on the configuration of the parameter p which is also essential
for the definition of end of line elements. The length of a line is
given by the number of aligned elements. For @,=¢.=¢ we deal
with parallel line elements. Their orthogonal distanle, or that of
their productions, is defined by d = p-sin¢. Parallel line
elements that are not staggered are identified by p=d or ¢=90°.
These investigations can also be extended to line elements of
different widths. Then, however, the distance measures must be
corrected by the corresponding scale factors s.

Dipoles with p=0, ¢;=X, ¢.#0° and u=X indicate
characteristic pattern elements. If both line elements, P, and P;,
are end of line elements a corner is present. A line joint is
detected if one of both line elements, P, or P, is an end of line
element, and a line intersection (crossing) if neither of them is of
this type. The acute angle o of either of these configurations is
given by a = mod(¢,, 90°). For the detection of these
characteristic pixels it is sufficient to investigate only one half of
the matrix (above or below the diagonal).

Rotational symmetry

A feature is introduced that describes a pattern by its degree
of self-congruence as a function of the rotation angle. Since
rotation is bound to a centre (fixed point) we propose to search
for the optimum centre for each angle, i.e., for the maximum
degree of congruence. Because the feature shall be rotation
invariant we must get rid of the absolute orientation angles .
This is achieved by using the angle differences y for the
abscissa of the desired feature function c,. For the evaluation
we consider groups of rows E, (x,m=const) and dipoles with
m=m=m; (columns) thus defining a resolution level. Then, the
values of’ cy(y) are given by the maximum number of identical
dipoles (parameters p,9;,¢;,u and s) that can be found between
all rows of angle groups fik(xi) and all rows of angle groups
Ek(xj) = E, (x;+V) within the matrix representation. (The
positions ork the code words in the rows are not relevant.) This
method allows the determination of c“}}(\y) for 0°<y<180°. To
obtain the value for y=180° we compare dipoles that are
identical except for the parameter u (which must have the
opposite sign) in rows of groups E, (x) with X=Xi=X;- In the
example of Fig.3 the maximum numkber of code words (7) for
y=90° is found, for instance, by comparing rows "d" and "e".
This number can be related to the total number of pixels (8) if
the relative angular self-congruence (7/8) is desired.

Speaking in terms of the explicit transformational
approach? this means comparisons between the original pattern
and its rotated versions that are shifted in order to reach the best
match for each angle y. In the above mentioned example a
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configuration is investigated where the pattern is rotated by 90°
with respect to the original and shifted so that pixel "d" falls
onto pixel "e".

Obviously the feature function c,, is invariant under similarity
transformations of the input pattern?. A consequence of its
independence from a rotation centre is the loss of inner
positional relations. Examples demonstrating the resulting
ambiguities are given in the experiment section of this paper.
This loss, however, can easily be compensated for by other
features, e.g., those described in the previous paragraph.

Similarity

A pattern's self-congruence is described as a function of
scale factor. Again we suffer from the shift variance of the
transformation (centre of zoom) and therefore we search again
for maxima. To achieve scale invariance we do not use the
absolute size m but the scale factor s for the abscissa of the
feature function c,. Their values are given by the maximum
number of identical dipoles (parameters p,¢.,¢., and u) found
between all rows of size groups E, (m;) and all rows of size
groups E,(m;) = E,(s-:m;) within the array representation.
There are no restrictions concerning the dipoles (columns) to be
investigated. It is, however, convenient to perform the
comparisons separately for each orientation angle x (rows).

Again, considering the explicit transformational approach,
we realize that the original pattern is compared with either
reduced or enlarged versions that are shifted in order to reach
the best match for each scale factor s. The feature function c;
has the same invariance properties as cy,.

Other features

A combined, two-dimensional feature function c,(y,s) can
be calculated which contains much more information than the
two one-dimensional features. The axial reflection feature
results from comparison of a pattern with its mirrored version.
Again one has to eliminate the fixed points (symmetry axes).
This feature c;(c==%1) is not extracted by detection of equal
dipole properties but of dipoles and their mirrored counterparts,
expressed by the appropriate parameters. Thinking again of
similarity transformations we realize that a feature function
expressing shift congruences is still missing. Such a feature ¢
is known since long: the auto correlation function. It can be
gained from the array representation by counting dipoles that
have equal properties with respect to the parameters p and @,
and thus coincidence detections are obsolete. This feature,
however, is merely shift invariant.

EXPERIMENTS

The angle feature c,, was digitally computed for some
simple binary patterns of constant line width. The patterns were
given in an 64 x 64 field from which four orientation excerpts
(x=0°, 45°, 90°, 135°) were computed using an orientation
selective correlation kernel of 5 x 5 pixels and optimum width.
A suitable threshold operation applied to the correlation
functions led to what we called the data base of the implicit
transformational concept.

Figure 4 shows the orientation excerpts (upper rows) and
the feature functions (dark fields) for a circle, a cross, as well as
L- and T-shaped patterns (lower left corners). The latter patterns
cannot be distinguished by this feature function due to the
mentioned loss of positional information. These experimental
results corroborate the equivalence between the new concept and
the explicit transformational approach, which is mathematically
evident. The corresponding results obtained from the latter
method are shown as graphs in the white fields. The maxima are
converted into minima due to coincidence detection by taking the
absolute values of differences; furthermore a three times finer
angle increment was applied.



Fig.4 Four patterns (lower left corners), their orientation excerpts (upper
rows) and angle feature functions obtained via implicit (dark field)
and explicit transformations (white field). For the latter method a
three times finer angle increment was used and the maxima were
converted into minima.

DISCUSSION

A parallel working processor designed for the extraction of
relational features mainly consist of coincidence detectors and
quite a lot of wiring between them®. Both is in good agreement
with the anatomy of neural structures and neural processing
principles. A great advantage over the explicit transformational
approach is the data reducing preprocessing which, in general,
agrees with neurophysiological and psychophysical findings.
Contrary to the majority of the present theories about the
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purpose of the orientation and size selectivity of the visual
system we neither follow the Fourier analysis, nor the
Perceptron approach!3,

The features c,, cq, and c; express global pattern
properties corrcspondu ng %o })erceptual categories found and
used in Gestalt psychology” and are well suited for pattern
description, association and classification purposes!3. Local
features such as endpoints, corners, line joints and intersections
are important as well, though only their numbers, or relative
positions are highly invariant features. An indispensable
property of systems producing invariant features is also met:
The preservation of variance information. It is needed to restrict
the invariance, for instance in contextual situationsZ. This
information can be taken from the data base (full variance) or
from the relational representation (all except shift variance). The
latter nicely indicates changes in size and angular presentation of
a pattern by defined permutations of groups E in the array.

This sketch of implicit transformational processing in
which we put empbhasis on basic computational aspects can only
give a slight impression of the potential processing power.
Surely, the method needs extensions and refinements but in
contrast to other biologically relevant concepts, however, a
mathematical formulation of the processing principle could be
presented.
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