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1. Introduction

The worth of the Fourier power spectrum as well 
as the autocorrelation function for the analysis and 
recognition of two-dimensional patterns is well recog-
nized [1–8]. Besides their characteristic of indicating 
pattern periodicities, and of being geometrically cen-
tered (in the case of real valued pattern functions) it 
is mainly their shift invariance that makes them so 
attractive for pattern analysis purposes. Two integral 
features are commonly extracted from either of these 
signal representations in order to reduce their dimen-
sionality and thus to allow easier postprocessing:

(i) Integrals taken along straight lines through the 
origin as a function of their orientations (angle fea-
ture).

(ii) Integrals taken along concentric circles around 
the origin as a function of their radii (scale feature).

Only one half-plane of either pattern representa-
tion must be evaluated if real valued patterns are in-
vestigated (point symmetry due to properties of the 
Fourier transformation). These feature functions 
show suitable further invariances: The first is size in-
variant, the second is rotation invariant.

Both feature functions can be evaluated using op-
tical parallel computing techniques. The Fourier 
spectrum can be generated quite precisely by a co-

herent-optical Fourier transformation if the input 
patterns are available as transparencies, or if suitable 
spatial light modulators can be used. The coherent-
optical generation of the auto correlation function, 
however, is more complicated since, in general, a 
two-step process is necessary. If the requirements 
concerning the space bandwidth product (SBP) are 
not too high, typically less than that presented by a 
TV half-frame image (SBP < 105), an incoherent-
optical ground-glass auto correlator [11] (“shadow 
casting”-principle [9,10]) can be used. Usually the 
features are extracted from the light distributions 
by suitable apertures and photodetectors (e.g., ro-
tating slits or sectors together with light collecting 
optics and sensors) [2,12,13], or by the well-known 
and convenient wedge-ring photodetector arrange-
ment [7,14–18].

In this paper the angle feature functions are inves-
tigated. It is shown that the constituting line integral 
values computed from the power spectrum are iden-
tical to those taken along orthogonal lines through 
the autocorrelation function of a pattern. In other 
words, it is demonstrated that the feature function 
resulting from spatial integrations over a rotating 
straight line through the origin of the power spectrum 
is identical to the (generalized) angle chord function 
[3,17−20], except for a shift of 90°. A third method 
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for the evaluation of this feature function, which can 
be realized with an opto-digital processor, is de-
scribed. Due to its incoherent-optical fi rst stage there 
are no restrictions concerning the physical represen-
tation of the input pattern (transparent, diffuse re-
fl ecting, self-luminous, etc.) and there is no need for 
a coherent light source. Contrary to the ground-glass 
correlator the SBP of this preprocessor is not limited 
by diffraction occurring at the input transparency 
[21]. Since in most cases a digital computer is used 
for further data processing anyway (e.g., classifi ca-
tion) [15−17,22,23] it is no problem to perform 
some additional arithmetic operations on the elec-
tronically sensed output of the optical stage.

2. Mathematical deductions

For simplicity ideal line integrals are considered 
here instead of more realistic integrals taken over slits 
of fi nite extent or sectors. Let the autocorrelation 
function of a two-dimensional pattern f x y( , ) be de-
noted by a x y( , ) and the pattern’s power spectrum 
by A u v a x y( , ) ( , )� � �� . (Note that in this paper 
capital letters are used for functions in the frequen -
cy domain and all integrations extend from �� to 
��; the symbol � �� � denotes Fourier transforma-
tion). Given the autocorrelation function in polar co-
ordinates, then the angle chord function is defi ned by

n a r r( ) ( , )� �� � � � �d  (1)

with �r x y� �2 2  and � � � 	arctan y x , and the 
corresponding notation of the power spectral angle 
feature is

M A p p( ) ( , )� �� � � � �d  (2)

with �p u v� �2 2  and � � � 	arctan v u . Obviously 
these functions show a periodicity of 180°. Using 
the gating property of �-functions, these features can 
be written in the following way (fi g. 1a)

n a x y s x y( ) ( , ) ( )� � 
�� � d d  (3)

with s x y� � �sin cos� �  and r x y� �cos sin� � , 
where the �-line function defi nes the straight line of 
integration with an orientation angle �, and (fi g. 1b)

Fig. 1. Extraction of the angle chord function from the auto-
correlation function (a) and of the power spectral angle feature 
from the corresponding power spectrum (b).

M A u v q u v( ) ( , ) ( )� �� 
�� d d  (4)

with q u v� � �sin cos� � and p u v� �cos sin� �, 
i.e. with an integration line having the orientation 
angle �. Applying the generalized version of Parse-
val’s formula [24]
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and substituting g x y1( , ) by a x y( , ) and g x y2( , ) by 
the (real valued) �-line function from eq. (3), then, 
by taking into account the Fourier correspondence 
of the latter

� � �( ) ( )s q� � �  , (6)

and with � �� � 90°, the equivalence of the two 
functions is evident

n M ° M( ) ( ) ( )� � �� � �90  . (7)
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3. Approach via projections

A third method for the evaluation of the angle fea-
ture is based on the Fourier projection theorem (cen-
tral slice theorem) [25] which plays an important 
role, for instance, in the fi eld of tomographic image 
recon struction [26,27]. (Gindi and Gmitro [28] pro-
pose to synthesize the whole power spectrum from 
pattern projections from which further features can 
be extracted.) Fig. 2 illustrates this theorem: The par-
allel projection t s�( ) gained under the angle � from 
a pattern f x y( , ) can be expressed by integrations 
along lines that are collinear to the projection direc-
tion (fi g. 2a)

t s f x y r�( ) ( , )� � d  . (8)

Considering the two-dimensional Fourier transforma-
tion of f x y( , ) with respect to the rotated coordinate 
system (fi g. 2b)

Fig. 2. Explanation of the Fourier projection theorem: Projec-
tion t s�( ) of pattern f x y( , )  (a) and corresponding central slice 
function T p�( ) of the pattern’s complex spectrum F u v( , )  (b).

F u v f x y rq sp r s( , ) ( , ) exp ( )� 
 � 
 � �� ��� j d d2� , (9)

a central slice T p�( ) of the complex spectrum F u v( , ) 
can then be written as

T p F u v

f x y r sp s

q�

�

( ) ( , )

( , ) exp

�
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�
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0

2d j d�� ,
 (10)

which is the one-dimensional Fourier transform of 
t s�( ). The basic version of Parseval’s formula for one-
dimensional functions

g x x G u u( ) ( )
2 2
d d� ��  (11)

is now used to relate the integral energies of the func-
tions in eq. (8) and (10)

M T p p
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d d d
 (12)  

with

T p p A u v q u v� �( ) ( , ) ( )2 d d d� ��� 
  .

For real valued patterns it is suffi cient to square the 
integral values of eq. (8) and thus, beside this, only 
summations are required for the computation.

With this mathematical vehicle it is again possible 
to demonstrate the equivalence formulated in eq. (7), 
since the power spectral angle feature can be written 
as

Fig. 3. Incoherent-optical preprocessor for the evaluation of 
the angle feature function via projections.
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Function ˆ ( )T p�  is a central slice through the power 
spectrum A u v( , ) and the projection value ˆ ( )t� 0  
is obtained from the line integral through the 
origin of the auto correlation function a x y( , ) with 
ˆ ( ) ˆ ( )T p t s� �� � �� .

4. Experiments

The three methods were applied to line-like input 
patterns (36 capital letters and numerals). Fig. 4a 
shows incoherent-optically produced autocorrelation 
functions of a sample of six characters (shown to-
gether with the plots in (fig. 5) that were continuous-
ly scanned by a sufficiently narrow slit rotating 
around the origin. The light intensity behind this 
slit mask is measured with an integrating sphere and 
the amplified photo-current is directly recorded by 
an x,y-writer. The original plots, as a function of the 
angle �, are shown as curves “a” in fig. 5. A similar 
measuring technique was applied to the correspond-
ing, coherent-optically computed Fourier spectra 
which are depicted in fig. 4b. The resulting intensity 
versus angle � functions in fig. 5 are indicated by the 
letter “s”. Each curve is normalized to its maximum.

The projection based approach (eq. (12)) was real-
ized using an astigmatic imaging system “C”‚ (cylin-
drical lens correlator) and a CCD-line detector “S” 
for the opto-electric conversion of the projections. 
The image rotation is achieved by a stepper-motor 
driven Dove prism “P” (similar optical elements are 
feasible). The basic arrangement is sketched in fig. 3. 
For each angular position the 1024 photo-voltages 
from the sensor are digitized and read into a μ-pro-
ces sor system (Z 80). For every projection, this pro-
cessor squares each sample value and then, sums 
them. The results are shown as curves “p” in fig. 5. 
(The plot gained from the pattern “H” contains, for 
the first 90°, the angular sampling points separated 

Fig. 4. Incoherent-optically computed autocorrelation func-
tions (a) and the corresponding coherent-optically gained 
power spectra (b) of the letters “H MARKO”.
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by �� � 2°; all curves “p” are hand-drawn according 
to the original computer protocol; the curves are 
normalized as well.)

5. Discussion

It is obvious from the graphs in fig. 5, represent-
ing those obtained from the other 30 investigated pat-
terns, that the results from the three computational 
methods are in good qualitative accordance, i.e., the 
plots for each pattern have quite similar shape. Even 
details (cf. the pattern “K”) are present in all three 
curves. The absolute differences between the results 
are suspected to be due to the following experimental 
conditions: (1) The slightly different input patterns 
used for the three approaches (mainly differing in the 
“line-width to symbol size ratio”, due to photograph-
ic processes), (2) the finite slit-widths, (3) the finite 
precision in the adjustment of the rotation centre 
(which causes severe errors due to the high intensities 
at the origin), and (4) the moderate SBP of the applied 
auto correlation technique [21].

The most pronounced curves result from the pro-
jection based method. There are no shortcomings as 
in (2) to (4). The SBP of the proposed processor de-
pends mainly on the size of the apertures and the 
quality of the optical elements. The system’s upper 
bandlimit, defined by the aperture orthogonal to the 
refracting axis of the cylindrical lens can easily be 
chosen to meet the sampling condition associated 
with a given detector arrangement. The maximal an-
gular sampling increment however, is more difficult 
to determine. For line-like patterns it can be derived 
from their line-width.

Some specific advantages and possibilities of the 
projection based approach are now summarized:

– The incoherent-optical preprocessor works 
with white or coloured light. Therefore, even diffuse 
reflecting pattern representations can be accepted 
and possible colour information is preserved.

– The imaging system permits an easy adaptation 
of the pattern size or input area to the sensor dimen-
sions.

Fig. 5. Angle feature functions of six letters: Extracted from 
their autocorrelation functions “a”, from their power spectra 
“s” and via pattern projections “p”.
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– The speed of the processing depends on the 
type of sensor, the image rotator and the digital pro-
cessor. If a fast read out sensor is available together 
with a fast data acquisition circuit it seems possible 
to process up to 30 patterns per second (with the 
prism rotating at about 500 rpm, a �� of some de-
gree and about 103 samples per projection).

– Self-luminous patterns, e.g., from a CRT-dis-
play, can be processed as well, although care must be 
taken for a temporal synchronisation between the 
display and the sensor.

– A CRT-display can also be used to rotate a pat-
tern if the deflection voltages are suitably computed. 
The speed, however, is limited by the number of 
frames per second of the display system. In such a 
system it is possible to generate the projections di-
rectly on the display if the linear dynamic range of 
the screen is high enough.

– The squaring operation and the succeeding inte-
gration can also be performed by analog-electronic 
circuits if the accuracy and stability are sufficient.

6. Digital evaluation

An additional investigation concerning the com-
putational effort (defined by the number of multi-
plications) for a purely digital evaluation of the angle 
feature, either in the frequency domain, or via pro-
jections led to the following insights: Supposing an 
optimized FFT-algorithm, a bilinear interpolation 
scheme and an input with n n�  samples, then the 
effort is lower for the frequency domain approach if 
more than m integral values are to be calculated, e.g.,  
m � 4 6 8, ,  for n � 64 256 1024, ,  respectively.

This is due to the many spatial interpolations ne-
cessary for the evaluation of the projections. The ac-
curacy of the features however, especially for patterns 
of large DC-component, is essentially higher for the 
projection based approach. The reason is that the sim-
ple bilinear interpolation yields considerable errors 
for strongly varying signals as they occur pre ferably 
in the spectral domain in the vicinity of the DC-term.

Since the digital computation of a pattern’s 
Fourier transform is quite time consuming, not to 
speak of its autocorrelation function, the proposed 
opto-digital method represents a rather fast and 
easily implemented alternative.

7. Conclusion

Obviously, integrals taken along central slices are 
not identical to those computed from sector-shaped 
areas. Nevertheless, it has been shown that features 
gained, for instance, from wedge samples either of 
the Fourier power spectrum or of the autocorrelation 
function of a pattern, are related according to the 
Parseval formula (eq. (5)). Speaking in more general 
terms, the similarity between a practical integration 
area and its Fourier transform determines the simila-
rity between the features that are gained with such an 
integrating device in either domain. Casasent and 
Chang wrote: “... the physical significance of the 
two representations (wedge-ring detector samples 
of the Fourier transform and the autocorrelation) is 
quite different. We make no effort to decide which 
is best for pattern recognition” [17]. The presented 
considerations allow for the quantification of these 
differences and can help in choosing the better suited 
feature for a specific pattern recognition task.
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