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Abstract

We introduce a rather general representation for
pictorial data that allows one to derive features which
are invariant under geometrical transformations.
These features are based on intrinsic measures of
the given signal. Beside these absolute inner geo-
metrical relations it delivers information about the
signal's situation with respect to external coordi-
nates.

The processing concept was developed for parallel
computing structures and we try to give some design
hints for suitable parallel computing mechanisms.
This allows us, to a certain degree, to compare its
capabilities with those demonstrated by biological
pattern processing systems, e.g. the human visual
system. Thus our approach is not well suited for im-
plementations on v. Neumann-type computers.

To illustrate our concept we show results ob-
tained from an early coherent optical simulation and
from a more extensive experiment performed on a dig-
ital general purpose computer.

Introduction

Considering principles of true pattern recogni-
tion we mean invariant pattern recognition, not some
kind of code deciphering, i.e. the correct classifi-
cation of a pattern independent from its presenta-
tion to the input device of the processing system.
In many cases we are already satisfied if we can
achieve a classification which is invariant under
variations of luminance, contrast, shift, scale and
orientation of the signals. What we need for that
are features remaining unchanged under those trans-
formations and allowing convenient Tlearning and
classifying. Concerning the geometrical transforma-
tions we think it is advantageous to be invariant to
their full extent, i.e. within the limits of the
sensory plane and not only for small deviations from
a prototype representation. For many tasks, however,
this will force us to get additional information
about the position of the pattern relative to fixed
coordinates as to distinguish for example between
the patterns "6" and "9" or "g" and "9" in a given
context.

Such an approach can simplify complicated classi-
fication tasks and may also lead to better interpre-
tations of human pattern recognition capabilities.
Let us assume, e.g., a system which cannot yet iden-
tify the symbol "M" but already classifies the let-
ter "W" correctly. Wouldn't it be better to state:
this pattern looks like a "W" turned by 180 degrees,
instead to "learn" a completely new set of charac-
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teristic features?

We should emphasize that invariances cannot be
achieved merely by so-called invariant processing.
Space invariant systems, e.g., deliver equal pro-
cessing properties independent of the signal loca-
tion at the input but the output location is that of
the input. In many cases we might still get the de-
sired features by applying spatial integration to
the output signall, however, at the expense of the
pattern separability. Many partially invariant rec-
ognition systems, e.g. of the perceptron-type suffer
from this problem2. Instead of template matching
(cross correlation) or related operations we suggest
operations that compare the signal with itself (auto
comparison). Such approaches,however, imply the loss
of positional information . We can overcome this
disadvantage by using local operations34,

We developed such "relational concepts" after in-
vestigations of perceptron-like structures which
turned out to be rather limited in their explanation
of processing capabilities shown by the human visual
system367 Qur goal was to generate a signal repre-
sentation which allows statements about the position
of a pattern with respect to the sensory unit, as
well as to ease the extraction of transformation in-
variant features, thereby applying techniques show-
ing elementary neuronal relevance.

Boundary Conditions

Since our concept should show some biological
plausibility we use the following guidelines for our
approach:

1 The processing shall be fitted to the pictorial
aspect of the signals. Hence we should prefer
"manipulations of pictorial content rather than
pixel states" as pointed out by Sternberg®.

2 The highest possible degree of parallel computa-
tion shall be incorporated.

3 The high amount of interconnections per elementa-
ry processing unit of about 10* which is found in
neural nets shall be taken into account.

4 Multiplications as well as divisions, e.g. for
normalizing etc., shall be avoided (except for
constant coefficients).

Today it can be regarded as a fact that cortical
processing of patterns is done on some kind of band-
passed or skeletted version of the input signal (for
this, see the references in Marr's book 9 ). There
exist already useful theories about possible mecha-
nisms for this purpose so that we can assume such
preprocessed patterns as input for our systemS.



General Relational Signal Representation

To obtain intrinsic measures of a pattern we pro-
pose to compare it or parts of it with itself. In
order to become independent of the individual geo-
metrical presentation of a pattern we compare it
with a set of geometrically transformed versions of
itself . I.e., these versions are derived from the
individual input representation by a fixed process-
ing scheme. Figure 1 illustrates this approach.
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The input signal e is fed to the transforming
system T which produces rotated and zoomed versions
t. with respect to an arbitrarily chosen point. This
can be done in parallel by fixed connections reach-
ing the comparison stage C. On the other hand the
input pattern is windowed by a set W of fixed and
highly overlapping window functions which may differ
in size, shape and profile and are arbitrarily dis-
tributed over the input plane. This decomposition of
the input into its parts w, can again be achieved in
parallel using selective connections and weighting.
Since we want to achieve independence from a fixed
centre of rotation and zoom and to introduce the set
of translatory transformations we need a separate
unit for shifts in the x and y directions which fol-
lows circuit T or, as assumed here, acts on each of
the windowed details wg.A11 shifted versions sjx can
be derived in parallel by appropriate "wiring" to
the second input of stage C. Thus the whole output
of this comparator circuit has an extent of (k-j-i)-
times the size of the input plane.

The comparison is performed pointwise in parallel
between all pattern combinations tj and sjk. We pro-
pose the absolute value of the difference expressed
by disp = |t: - s; k| (Another possible measure is
the s&uared é1fference ) By this we obtain results
which are restricted to values between 0 and the
maximum signal amplitude. A perfect match is indica-
ted by a zero output independent of the absolute
signal strength in contrary to multiplicative compa-
rators which need normalization in order to allow an
interpretation of the results. {6 }

ijk

Fig. Basic relational processing concept

The desired relational representation A = ij
is achieved by spatial integration of the difference

images djjk:
6TJk(t) =_/]d1-jk(x,y,t) dXd_Y

If we assume for better understanding a multiplying
comparator C then each output 5 is the correlation
function of the signals t; and "‘k

Figure 2 shows how a neuronal circuit of a dif-
ference comparator for spatially sampled patterns
may look like in principle. Assuming such spatially
discrete processing we can give some estimates for
an optimum bandwidth of the above mentioned differ-
entiating preprocessor: the line width of its output
should be about twice the shift increment of unit S.

At this point let us summarize the principal
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properties of our relational representation:

1 An input pattern is described by its angular and
positional congruences. These measures are repre-
sented as characteristic "activity configuration'

iik

2 A different geometrical presentation of the same
pattern yields this configuration at a different
location in A. Though it may be compressed or ex-
panded its characteristic property expressed by
the sequence of activity is not changed.
ti(p.a) Sj(pa NETRAT for Sik 2 Y
ooe viAk(p,q,t) =

J 0 otherwise
. t]. - sjk for t]. > SJ.k
uisglpaast) =
J 0 otherwise
Yijk 4i(Pa@rt) = uggp + vig
85t = ZZ d;jPrast)
P q
\{ O——= excitatory neuron
Ta ® O—— inhibitory neuron

Fig. 2 Model for a neuronal comparator circuit

Extraction of Invariant Features

The relational representation A contains a tre-
mendous amount of data and due to the fixed confiqu-
ration of windows it is in no way transformation in-
variant.Therefore we have to look for data reduction
and for methods to achieve independence from the
windows. First we apply a threshold operation ©. It
serves for the suppression of components 51‘jk that
exceed the spatial integral value T; of the trans-
formed signal as shown in fig.3. The output of this
stage will be computed as follows:

YT -6
@jjk = { 01 ijk
and thus leads to a more significant
figuration" A ={aj;y}.

for 61Jk
otherwise
"activity con-

t;

Fig. 3 Block-diagram of the proposed concept

A direct way to get rid of the fixed window
scheme is to omit this unit and to apply global com-
parisons. Here, however, we use another simple meth-
od based on our universal representation A: we pro-
ject array A in the k-direction, i.e. we introduce
the summation over all windows.Compared with a glob-
al concept we achieve two principal advantages:

1 The positional information is saved from the very
beginning and thus we can use it together with
the characteristic configurations, e.g. for mo-
tion analysis10

We obtain a higher significance for the resulting
signal representation due to the threshold opera-
tion which is not applicable to global comparison
techniques.

The resulting array B =

{Bij} is now a shift invari-
ant representation.

It 1s, however, variant under



rotation and zoom since it still depends on the pa-
rameter j determining the centres of these transfor-
mations. For the elimination of this variable we
propose a maximum selection which becomes plausible
when considering the correlative nature of the pre-
ceding computation.

i = max; (Bij )
The resulting invariant feature vector I'= { v; } ex-

presses inner angle relations and shape similarities
of the input pattern.

Experimental Results

Figures 4b,c show sections through the represen-
tation A of the letter "B" in upright position corr-
esponding to the window function that selects the
vertical bar (fig.4b) and the one selecting the up-
per half of this symbol (fig.4c). These results
were computed coherent-optically applying correla-
tion filtering6. Figure 4a shows the point response
of the simulation system which was computer plotted.
We implemented 200 transformations:20 rotations in¢
with an increment of 18 degrees and 10 scale factors
m between 0.5 and 2. Shifts are continuous since
correlation was applied. The untransformed input
pattern in fig.4a is defined by ¢ = 0 and m = 1. The
corresponding outputs are indicated by arrows.

For the digital simulations we used an input ar-
ray of 64 x 64 pixels. We restricted ourselves to
24 rotations with an increment of 15 degrees (no
scale transformation). The shift increment was one
pixel. We applied 81 equally spaced and overlapping
windows of the size 16 x 16 pixels.

Figure 5 shows the feature vectorsI'corresponding
to a binary chevron pattern presented in three posi-
tions.Apart from slight differences due to our rath-
er coarse sampling the invariance is obvious. The
feature vectors for a binary ring pattern can be
seen in fig.6.

The following graphs are sections through array B
for i=0, i.e. the "auto comparison" of the input for
both, global and local comparison techniques. Figure
7 shows the "activity" in such sections plotted over
the shift coordinates jy, and J'y. For figs.7a,b,c a
modified chevron having a vertical bar of double in-
tensity was used as input. These plots let com-
pare the different comparator mechanisms (part c was
normalized). Figures 7d,e were calculated for the
ring pattern of fig.6. We can state that the local
difference technique leads to the sharpest peak.

o] 6 12 18 24
Fig. 5 Feature vectors for a chevron in 3 positions

Concluding Remarks

We introduced a signal representation which is
calculated by a fixed parallel computational scheme.
Thus the computational speed strongly depends on the
applied amplitude coding, e.g. impulse rates in the
nervous system.

The effort spent in our system serves for all
patterns while in most of the others it is special-
ized to treat each input presentation separately.
This economical aspect becomes particularly impor-
tant when comparing highly invariant recognition
systems. Since, e.g. systems of the cross correlation
type will require an overproportional increase of
effort caused by the combinatory explosion of nec-
essary "masks" when demanding for more invariance.

It was shown that invariant features can be de-
rived from our general signal representation. On the
other hand it may also serve for or explain motion
analysis of patterns as well as detection and analy-
sis of temporal changes within a pattern.

Since all components of the array representation
are time dependent we can "measure" for each, so-
called receptive fields and tuning curves which are
used in neurosciences to characterize types of neu-
ronal processing. Hence we can call in question that
the measurement of receptive fields implies hierar-
chical processing often described with perceptron
structures. Furthermore we hope to give some hints
for an explanation of the constancy phenomenon in
visual perception which may also be based on paral-
lel representations of geometrically transformed
versions of the input.
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Fig. 6 Feature vectors for a ring in two positions
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Fig. 4a Output of the transforming T “B”
unit T for the input pattern "B"

Fig. 4b Section through represen- Np”/| Ny’
tation A for the indicated window T B ® }4
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Fig. 7 "Auto comparison functions" (see text)
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