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Abstract

We introduce a rather general representation of 
pictorial data that allows one to derive features 
which are invariant under geometrical transforma-
tions. These features are based on intrinsic measures 
of given signals. Beside these absolute inner geo-
metrical relations, it delivers information about a 
signal's situation with respect to external coordi-
nates.

The processing concept was developed for parallel 
computing structures and we try to give some design 
hints for suitable parallel computing mechanisms. 
This allows us, to a certain degree, to compare its 
capabilities with those demonstrated by biological 
pattern processing systems, e.g. by the human visual 
system. Thus, our approach is less suited for imple-
mentations on "von Neumann"–type computers.

To illustrate our concept, we show results ob-
tained from an early coherent–optical simulation and 
from a more extensive experiment performed on a digi-
tal general purpose computer.

Introduction

Considering principles of true pattern recogni-
tion, we mean invariant pattern recognition, i.e. 
the correct classification of a pattern independent 
from its presentation to the input device of the 
processing system, not some kind of code decipher-
ing. In many cases, we are already satisfied if 
we can achieve a classification which is invari-
ant under variations of luminance, contrast, shift, 
scale, and orientation of signals. What we need for 
that are features remaining unchanged under those 
transformations and allowing convenient learning and 
classifying. Concerning the geometrical transforma-
tions, we think it is advantageous to be invariant 
to their full extent, i.e. within the limits of the 
sensory plane and not only for small deviations from 
a prototype representation. For many tasks, however, 
this claim will force us to get additional informa-
tion about the position of the pattern relative to 
fixed coordinates as to distinguish, for example 
the patterns "6" and "9", or "9" and "9" in a given 
context.

Such an approach can simplify complicated classi-
fication tasks and may also lead to better interpre-
tations of human pattern recognition capabilities. 
Let us assume, e.g., a system which cannot yet iden-
tify the symbol "M" but already classifies the let-
ter "W" correctly. Wouldn't it be better to state: 
pattern "M" looks like a "W" turned by 180 degrees, 
instead to "learn" a completely new set of charac-

teristic features?
We should like to emphasize that invariances can-

not be achieved merely by so–called invariant pro-
cessing. Space invariant systems, e.g., show equal 
processing properties independent of the signal lo-
cation at the input but the output location is that 
of the input. In many cases, we might still get the 
desired features by applying spatial integration to 
the output signal 1, however, at the expense of the 
pattern separability. Many partially invariant rec-
ognition systems, e.g. of the Perceptron–type, suf-
fer from this problem 2. Instead of template matching 
(cross correlation) or related operations, we sug-
gest operations that compare the signal with itself 
(auto comparison). But these approaches imply the 
loss of positional information that we can overcome 
by using local operations 3,4.

We developed such "relational concepts" following 
investigations of Perceptron–like structures which 
turned out to be rather limited in their explanation 
of processing capabilities shown by the human visual 
system 5,6,7. Our goal was to generate a signal repre-
sentation which allows statements about the position 
of a pattern with respect to the sensory unit as well 
as the straightforward extraction of transforma-
tion invariant features, thereby applying techniques 
showing elementary neuronal relevance.

Boundary Conditions

Since our concept should show some biological 
plausibility, we use the following guidelines for 
our approach:
1 The processing shall be fitted to the pictorial 

aspect of the signals. Hence, we are to prefer 
"manipulations of pictorial content rather than 
pixel states" as pointed out by Sternberg 8.

2 The highest possible degree of parallel computa-
tion shall be incorporated.

3 The high amount of interconnections per elemen-
tary processing unit of about 104 which is found 
in cortical tissue shall be taken into account.

4 Multiplications as well as divisions, e.g. for 
normalization etc., shall be avoided (except for 
constant coefficients).

Today it can be regarded as a fact that cortical pro-
cessing of patterns is done on some kind of bandpass 
filtered or skeletal version of the input signal (see 
the references in Marr's book 9). There exist already 
useful theories about possible mechanisms for this 
purpose so that we can assume such preprocessed pat-
terns as input for our system 5.

A GEOMETRICAL–TRANSFORMATION–INVARIANT PATTERN RECOGNITION CONCEPT 

INCORPORATING ELEMENTARY PROPERTIES OF NEURONAL CIRCUITS

H.Glünder, A.Gerhard, H.Platzer, J.Hofer–Alfeis

Institut für Nachrichtentechnik, Technische Universität München 

Arcisstraße 21, D–8000 München 2, FRG



General Relational Signal Representation

To obtain intrinsic measures of a pattern, we 
propose to compare it, or parts of it, with itself. 
In order to become independent of the individual 
geometrical presentation of a pattern, we compare it 
with a set of geometrically transformed versions of 
itself that are derived from the input representation 
by a fixed processing scheme. Figure 1 illustrates 
this approach.

Fig. 1  Basic relational processing concept

On the one hand, an input signal e(x,y,t) is fed 
to the transforming system T which produces rotated 
and zoomed versions ti with respect to an arbitrarily 
chosen point. This can be done in parallel by fixed 
connections reaching the comparison stage C. On the 
other hand, it is windowed by a set W of fixed and 
highly overlapping window functions that may differ 
in size, shape, and profile and that are arbitrarily 
distributed over the input plane. The decomposition 
of a signal into parts wk can again be achieved in 
parallel using selective connections and weighting. 
Because we want to become independent of a fixed 
center of rotation and zoom, and wish to introduce 
translations as well, we need a separate unit for 
shifts in the x– and y–directions which follows cir-
cuit T or, as assumed here, acts on each of the 
windowed details wk. The shifted versions sjk can be 
derived in parallel by the appropriate "wiring" to 
the second input of stage C. Consequently, the output 
of this comparator circuit has an extent of (k·j·i)–
times the size of the input plane.

The comparison is performed point–wise in parallel 
between all pattern combinations ti and sjk. We pro-
pose the absolute value of the difference expressed 
by dijk = |ti − sjk|. (Another possible measure is the 
squared difference.) Therefore, we obtain results 
which are restricted to values between zero and the 
maximum signal amplitude. A perfect match is indi-
cated by a zero output, independent of the absolute 
signal strength, contrary to multiplying comparators 
which need normalization in order to allow an inter-
pretation of the results.

The desired relational representation � = ��ijk � 
is achieved by spatial integration of the difference 
images dijk:

�ijk(t) = �� dijk(x,y,t) dx dy
If we assume, for better understanding, a multiplying 
comparator C, then each output �j is the correlation 
function of the signals ti and wk.

Figure 2 shows how a neuronal circuit of a differ-
ence comparator for spatially sampled patterns may 
look like in principle. Assuming spatially discrete 
processing, we can give some estimates for the opti-
mum bandwidth of the above mentioned differentiating 
pre–processor: The line width of its output should be 
about twice the shift increment of unit S.

Let us now summarize the principal properties of the

properties of our relational representation:
1 An input pattern is described by its angular and 

positional congruences. These measures are repre-
sented as characteristic "activity configuration".

2 A different geometrical presentation of the same 
pattern yields this configuration at a different 
location in �. Though it may be compressed or ex-
panded, its characteristic property, expressed by 
the sequence of activity, is not changed.

Extraction of Invariant Features

The relational representation � contains a tre-
mendous amount of data and, as a consequence of the 
fixed set of windows, it is no at all transformation 
invariant. Therefore, we must consider data reduc-
tion and methods for becoming independent of the 
windows. First, we apply a threshold operation � 
which serves the suppression of components �ijk that 
exceed the spatial integral value �i of the trans-
formed signal as shown in Fig.3. The output of this 
stage computes as

�ijk = � �i − �ijk for �ijk < �i 
  0 otherwise

thus leading to a more pronounced "activity configu-
ration" � = ��ijk �.

Fig. 3  Block–diagram of the proposed concept

A direct way of getting rid of the fixed window 
scheme is to omit this unit and to apply global com-
parisons. Here, however, we use another simple method 
based on our universal representation �: we project 
array � in the k–direction, i.e. we introduce the 
summation over all windows. Compared to a global con-
cept, we achieve two principal advantages:
1 The positional information is saved from the very 

beginning, thus we can use it in conjunction with 
the characteristic configurations, e.g. for mo-
tion analysis 10.

2 We obtain a higher significance of the resulting 
signal representation by thresholding which is 
not applicable in case of global comparison tech-
niques.

The resulting array � = ��ij � is now a shift invari-
ant representation. It is, however, variant under
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rotation and zoom since it still depends on the pa-
rameter j that determines the centers of these trans-
formations. For the elimination of this variable, we 
propose maximum selection which becomes plausible 
when considering the correlative nature of the pre-
ceding computation.

�i = maxj ��ij �
The resulting invariant feature vector 
 = ��i � ex-
presses inner angle relations and shape similarities 
of the input pattern.

Experimental Results

Figures 4b,c show sections through the represen-
tation � of the letter "B" in upright position cor-
responding to the window function that selects the 
vertical bar (Fig.4b) and the one selecting the up-
per half of this symbol (Fig.4c). The results were 
computed by coherent–optical correlation filtering 6.
Figure 4a shows the computer plotted point response 
of the simulation system. We implemented 200 geo-
metrical transformations: 20 rotation angles � with 
an increment of 18 degrees and 10 scale factors m 
from the interval 0.5 to 2.0. Shifts are continuous 
since correlation was applied. The untransformed in-
put pattern in Fig.4a is defined by � = 0 and m = 1. 
The corresponding outputs are indicated by arrows.

For the digital simulations, we used an input 
array of 64 x 64 pixels. We restricted ourselves to 
24 rotations with an increment of 15 degrees (no 
scale transformations). The shift increment was one 
pixel. We applied 81 equally spaced and overlapping 
windows of the size 16 x 16 pixels.

Figure 5 shows the feature vectors 
 for a binary 
chevron pattern in three positions. Apart from slight 
differences due to our rather coarse sampling scheme, 
the invariance is obvious. The feature vectors for a 
binary ring pattern can be seen in Fig.6.

Finally, we consider sections through array � for 
i = 0, i.e. the "auto comparison" of the input, for 
both, global and local comparison techniques. Fig-
ure 7 shows the "activity" in such sections plotted 
as a function of the shift coordinates jx and jy. In 
Figs.7a,b,c the input was a modified chevron with the 
vertical bar having double intensity. The plots let 
compare the different comparator mechanisms (part c 
is normalized). Figures 7d,e were calculated for the 
ring pattern of Fig.6 and we state that the local 
technique leads to a more pronounced peak.

Concluding Remarks 

We introduced a signal representation which is 
calculated by a fixed parallel computational scheme. 
Thus, the computational speed strongly depends on the 
applied amplitude coding, e.g. impulse rates in the 
nervous system.

The effort spent in our system equally serves all 
patterns while with most pattern recognition concepts 
every input presentation is separately treated. This 
economical aspect becomes particularly important 
when comparing highly invariant recognition systems, 
since, e.g. systems of the cross correlation type, 
require a more than proportional increase of effort 
caused by the combinatorial explosion of necessary 
"masks" when demanding increased invariance.

It was shown that invariant features can be de-
rived from our general signal representation that may 
also serve for or explain the detection and analysis 
of moving as well as deforming patterns.

Since all components of the array representation 
are time dependent, we can determine for each so-
called Receptive Fields and tuning curves which are 
used in neurosciences to characterize types of neu-
ronal processing. Hence, we can call into question 
that the concept of Receptive Fields implies hier-
archical processing that is often associated with 
Perceptron structures. Furthermore, we hope to give 
some hints for the explanation of constancy phenom-
ena in visual perception which may also be explained 
by parallel representations of geometrically trans-
formed versions of patterns.
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Fig. 5  Feature vectors for a chevron in 3 positions Fig. 6  Feature vectors for a ring in two positions
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Fig. 7  "Auto comparison functions" (see text)
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Fig. 4c  Same as Fig.4b but for a 
different window

Fig. 4b  Section through represen-
tation � for the indicated window

Fig. 4a  Output of the transforming 
unit T for the input pattern "B"
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